DEITEL®

HOW TO
PROGRAM

SEVENTH EDITION

PAUL DEFREL * HARVEY DEITEL

.

HOW TO \
PROGRAM

SEVENTH EDITION ", /"

—

Deitel® Series Page

How To Program Series

Android How to Program

C++ How to Program, 8/E

C How to Program, 7/E

Java™ How to Program, 9/E

Java™ How to Program, Late Objects Version, 8/E
Internet & World Wide Web How to Program, 5/E
Visual C++® 2008 How to Program, 2/E

Visual Basic® 2010 How to Program

Visual C#® 2010 How to Program, 3/E

Simply Series

Simply C++: An App-Driven Tutorial Approach

Simply Java™ Programming: An App-Driven
Tutorial Approach

Simply C#: An App-Driven Tutorial Approach

Simply Visual Basic® 2010: An App-Driven
Approach, 4/E

CourseSmart Web Books
www.deitel.com/books/CourseSmart/
C++ How to Program, 5/E, 6/E, 7/E & 8/E
Simply C++: An App-Driven Tutorial Approach
Java™ How to Program, 6/E, 7/E, 8/E & 9/E

Simply Visual Basic 2010: An App-Driven
Approach, 4/E

(continued from previous column)

Visual Basic® 2010 How to Program
Visual Basic® 2008 How to Program
Visual C#® 2010 How to Program, 4/E
Visual C#® 2008 How to Program, 3/E

Deitel® Developer Series

AJAX, Rich Internet Applications and Web
Development for Programmers

Android for Programmers: An App-Driven
Approach

C++ for Programmers

C# 2010 for Programmers

iPhone® for Programmers: An App-Driven Approach

Java™ for Programmers, 2/e

JavaScript for Programmers

LiveLessons Video Learning Products
www.deitel.com/books/LivelLessons/

Android App Development Fundamentals
C++ Fundamentals

Java™ Fundamentals

C# 2010 Fundamentals

iPhone® App Development Fundamentals
JavaScript Fundamentals

Visual Basic Fundamentals

To receive updates on Deitel ubhcatlons Resource Centers, training courses, partner offers and more,
p p g p
please register for the free Deitel® Buzz Online e-mail newsletter at:

www.deitel.com/newsletter/subscribe.html
and join the Deitel communities on Twitter®
@deitel
Facebook®
facebook.com/DeitelFan
and Google+
gplus.to/deitel
To communicate with the authors, send e-mail to:
deitel@deitel.com

For information on government and corporate Dive-Into® Series on-site seminars offered by Deitel &

Associates, Inc. worldwide, visit:
www.deitel.com/training/

or write to
deitel@deitel.com

For continuing updates on Prentice Hall/Deitel publications visit:

www.deitel.com
www . pearsonhighered.com/deitel/

Visit the Deitel Resource Centers that will help you master programming languages, software develop-
ment, Android and iPhone/iPad app development, and Internet- and web-related topics:

www.deitel.com/ResourceCenters.html

www.deitel.com/books/CourseSmart/
www.deitel.com/books/LiveLessons/
www.deitel.com/newsletter/subscribe.html
www.deitel.com/training/
www.deitel.com
www.pearsonhighered.com/deitel/
www.deitel.com/ResourceCenters.html

HOW TO
PROGRAM

SEVENTH EDITION Y |

Paul Deitel
Deitel & Associates, Inc.

Harvey Deitel
Deitel & Associates, Inc.

DEITEL’

PEARSON

Boston Columbus Indianapolis New York San Francisco Upper Saddle River
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto
Delhi Mexico City Sao Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

Editorial Director: Marcia J. Horton

Editor-in-Chief: Michael Hirsch

Associate Editor: Carole Snyder

Vice President, Marketing: Patrice Jones

Marketing Manager: Yezan Alayan

Marketing Coordinator: Kathryn Ferranti

Vice President, Production: Vince O’Brien

Managing Editor: Jeff Holcomb

Associate Managing Editor: Robert Engelhardt

Operations Specialist: Lisa McDowell

Art Director: Anthony Gemmellaro

Cover Design: Paul Deitel, Harvey Deitel, Abbey Deitel, Anthony Gemmellaro
Cover Photo Credit: Excellent backgrounds/Shutterstock.com
Media Editor: Daniel Sandin

Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook appear
on page vi.

The authors and publisher of this book have used their best efforts in preparing this book. These efforts include the
development, research, and testing of the theories and programs to determine their effectiveness. The authors and pub-
lisher make no warranty of any kind, expressed or implied, with regard to these programs or to the documentation
contained in this book. The authors and publisher shall not be liable in any event for incidental or consequential dam-
ages in connection with, or arising out of, the furnishing, performance, or use of these programs.

Copyright © 2013, 2010, 2007, 2004, 2001 Pearson Education, Inc., publishing as Prentice Hall. All rights reserved.
Manufactured in the United States of America. This publication is protected by Copyright, and permission should be
obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any
form or by any means, electronic, mechanical, photocopying, recording, or likewise. To obtain permission(s) to use
material from this work, please submit a written request to Pearson Education, Inc., Permissions Department, One
Lake Street, Upper Saddle River, New Jersey 07458, or you may fax your request to 201-236-3290.

Many of the designations by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been
printed in initial caps or all caps.

Library of Congress Cataloging-in-Publication Data

Deitel, Paul J.
C : how to program / Paul Deitel, Deitel & Associates, Inc., Harvey Deitel, Deitel & Associates,
Inc., Abbey Deitel, Deitel & Associates, Inc. -- Seventh edition.
pages cm -- (How to program series)
ISBN 978-0-13-299044-8
1. C (Computer program language) 2. C++ (Computer program language) 3. Java (Computer program
language) I. Deitel, Harvey M., II. Deitel, Abbey. III. Title.
QA76.73.C15D44 2012
005.13'3--dc23
2011051087

10987654321
ISBN-10: 0-13-299044-X
ISBN-13: 978-0-13-299044-8

PEARSON

In Memory of Dennis Ritchie,
creator of the C programming language
and co-creator of the UNIX operating system.

Paul and Harvey Deitel

Trademarks

DEITEL, the double-thumbs-up bug and DIVE INTO are registered trademarks of Deitel and Associates,
Inc.

MICROSOFT AND/OR ITS RESPECTIVE SUPPLIERS MAKE NO REPRESENTATIONS
ABOUT THE SUITABILITY OF THE INFORMATION CONTAINED IN THE DOCUMENTS
AND RELATED GRAPHICS PUBLISHED AS PART OF THE SERVICES FOR ANY PURPOSE.
ALL SUCH DOCUMENTS AND RELATED GRAPHICS ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND. MICROSOFT AND/OR ITS RESPECTIVE SUPPLIERS HEREBY
DISCLAIM ALL WARRANTIES AND CONDITIONS WITH REGARD TO THIS INFORMA-
TION, INCLUDING ALL WARRANTIES AND CONDITIONS OF MERCHANTABILITY,
WHETHER EXPRESS, IMPLIED OR STATUTORY, FITNESS FOR A PARTICULAR PURPOSE,
TITLE AND NON-INFRINGEMENT. IN NO EVENT SHALL MICROSOFT AND/OR ITS
RESPECTIVE SUPPLIERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL
DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA
OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PER-
FORMANCE OF INFORMATION AVAILABLE FROM THE SERVICES.

THE DOCUMENTS AND RELATED GRAPHICS CONTAINED HEREIN COULD INCLUDE
TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE PERIODI-
CALLYADDED TO THE INFORMATION HEREIN. MICROSOFT AND/ORITS RESPECTIVE
SUPPLIERS MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/
OR THE PROGRAM(S) DESCRIBED HEREIN AT ANY TIME. PARTIAL SCREEN SHOTS
MAY BE VIEWED IN FULL WITHIN THE SOFTWARE VERSION SPECIFIED.

Contents

Appendices E through H are PDF documents posted online at the book’s Companion
Website (located at www.pearsonhighered.com/deitel).

Preface Xix

I Introduction to Computers, the Internet
and the Web

|
1.1 Introduction 2
1.2 Computers and the Internet in Industry and Research 2
1.3 Hardware and Software 5

1.3.1 Moore’s Law 6

1.3.2 Computer Organization 6
1.4 Data Hierarchy 7

1.5 Programming Languages 9
1.6 The C Programming Language 10
1.7 C Standard Library 12
1.8 C++ and Other C-Based Languages 13
1.9 Object Technology 14
1.10 Typical C Program Development Environment 16
1.10.1 Phase 1: Creating a Program 16
1.10.2 Phases 2 and 3: Preprocessing and Compiling a C Program 16
1.10.3 Phase 4: Linking 18
1.10.4 Phase 5: Loading 18
1.10.5 Phase 6: Execution 18
1.10.6 Problems That May Occur at Execution Time 18
1.10.7 Standard Input, Standard Output and Standard Error Streams 18
1.11 Test-Driving a C Application in Windows, Linux and Mac OS X 19
1.11.1 Running a C Application from the Windows
Command Prompt 20
1.11.2 Running a C Application Using GNU C with Linux 22
1.11.3 Running a C Application Using GNU C with Mac OS X 25
1.12 Operating Systems 27
1.12.1 Windows—A Proprietary Operating System 28
1.12.2 Linux—An Open-Source Operating System 28
1.12.3 Apple’s Mac OS X; Apple’s iOS for iPhone®, iPad® and
iPod Touch® Devices 29

1.12.4 Google’s Android 29

www.pearsonhighered.com/deitel

viii

1.13
1.14
1.15
1.16

2.1
2.2
2.3
2.4
2.5
2.6
2.7

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

3.10

3.11
3.12
3.13

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11

Contents

The Internet and World Wide Web
Some Key Software Development Terminology

Keeping Up-to-Date with Information Technologies
Web Resources

Introduction to C Programming

Introduction

A Simple C Program: Printing a Line of Text
Another Simple C Program: Adding Two Integers
Memory Concepts

Arithmetic in C

Decision Making: Equality and Relational Operators
Secure C Programming

Structured Program Development in C

Introduction

Algorithms

Pseudocode

Control Structures

The if Selection Statement

The if...else Selection Statement

The while Repetition Statement

Formulating Algorithms Case Study 1: Counter-Controlled Repetition
Formulating Algorithms with Top-Down, Stepwise Refinement
Case Study 2: Sentinel-Controlled Repetition

Formulating Algorithms with Top-Down, Stepwise Refinement
Case Study 3: Nested Control Statements

Assignment Operators

Increment and Decrement Operators

Secure C Programming

C Program Control

Introduction

Repetition Essentials
Counter-Controlled Repetition

for Repetition Statement

for Statement: Notes and Observations
Examples Using the for Statement
switch Multiple-Selection Statement
do...whiTe Repetition Statement

break and continue Statements
Logical Operators

Confusing Equality (==) and Assignment (=) Operators

30
31
33
34

40
41
41
45
49
50
54
58

70

71
71
71
72
74
75
79
80

82

89
93
93
96

114

115
115
116
117
120
121
124
130
132
134
137

Contents ix

412 Structured Programming Summary 138
4.13 Secure C Programming 143
5 CFunctions 158
5.1 Introduction 159
5.2 Program Modules in C 159
5.3 Math Library Functions 160
5.4 Functions 162
5.5 Function Definitions 162
5.6 Function Prototypes: A Deeper Look 166
5.7 Function Call Stack and Stack Frames 169
5.8 Headers 172
5.9 Passing Arguments By Value and By Reference 173
5.10 Random Number Generation 174
5.11 Example: A Game of Chance 179
5.12 Storage Classes 182
5.13 Scope Rules 184
5.14 Recursion 187
5.15 Example Using Recursion: Fibonacci Series 191
5.16 Recursion vs. Iteration 194
5.17 Secure C Programming 197

6 CArrays 216

6.1 Introduction 217
6.2 Arrays 217
6.3 Defining Arrays 218
6.4 Array Examples 219
6.5 Passing Arrays to Functions 232
6.6 Sorting Arrays 236
6.7 Case Study: Computing Mean, Median and Mode Using Arrays 239
6.8 Searching Arrays 244
6.9 Multdimensional Arrays 249
6.10 Variable-Length Arrays 256
6.11 Secure C Programming 259
7 CPointers 277
7.1 Introduction 278
7.2 Pointer Variable Definitions and Initialization 278
7.3 Pointer Operators 279
7.4 Passing Arguments to Functions by Reference 282
7.5 Using the const Qualifier with Pointers 284

7.5.1 Converting a String to Uppercase Using a Non-Constant
Pointer to Non-Constant Data 287

7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13

8.1
8.2
8.3

8.4

8.5

8.6

8.7
8.8

8.9

Contents

7.5.2 Printing a String One Character at a Time Using a
Non-Constant Pointer to Constant Data

7.5.3 Attempting to Modify a Constant Pointer to Non-Constant Data

7.5.4 Attempting to Modify a Constant Pointer to Constant Data

Bubble Sort Using Pass-by-Reference

sizeof Operator

Pointer Expressions and Pointer Arithmetic

Relationship between Pointers and Arrays

Arrays of Pointers

Case Study: Card Shuffling and Dealing Simulation

Pointers to Functions

Secure C Programming

C Characters and Strings

Introduction

Fundamentals of Strings and Characters
Character-Handling Library

8.3.1 Functions isdigit, isalpha, isalnum and isxdigit
8.3.2 Functions islower, isupper, tolower and toupper
8.3.3 Functions isspace, iscntrl, ispunct, isprint and isgraph
String-Conversion Functions

8.4.1 Function strtod

8.4.2 Function strto]l

8.4.3 Function strtouT

Standard Input/Output Library Functions

8.5.1 Functions fgets and putchar

8.5.2 Function getchar

8.5.3 Function sprintf

8.5.4 Function sscanf

String-Manipulation Functions of the String-Handling Library
8.6.1 Functions strcpy and strncpy

8.6.2 Functions strcat and strncat

Comparison Functions of the String-Handling Library
Search Functions of the String-Handling Library

8.8.1 Function strchr

8.8.2 Function strcspn

8.8.3 Function strpbrk

8.8.4 Function strrchr

8.8.5 Function strspn

8.8.6 Function strstr

8.8.7 Function strtok

Memory Functions of the String-Handling Library

8.9.1 Function memcpy

8.9.2 Function memmove

8.9.3 Function memcmp

288
290
291
291
294
297
299
303
304
309
314

334

335
335
337
338
340
341
342
343
344
345
346
346
348
349
349
350
351
352
353
354
355
356
357
357
358
358
359
360
361
362
363

Contents xi

8.9.4 Function memchr 363

8.9.5 Function memset 364
8.10 Other Functions of the String-Handling Library 365

8.10.1 Function strerror 365

8.10.2 Function strlen 365
8.11 Secure C Programming 366
9 C Formatted Input/Output 379
9.1 Introduction 380
9.2 Streams 380
9.3 Formatting Output with printf 380
9.4 Printing Integers 381
9.5 Printing Floating-Point Numbers 382
9.6 Printing Strings and Characters 384
9.7 Other Conversion Specifiers 385
9.8 Printing with Field Widths and Precision 386
9.9 Using Flags in the printf Format Control String 388
9.10 Printing Literals and Escape Sequences 391
9.11 Reading Formatted Input with scanf 391
9.12 Secure C Programming 398

10 C Structures, Unions, Bit Manipulation and

Enumerations 405
10.1 Introduction 406
10.2 Structure Definitions 406
10.2.1 Self-Referential Structures 407
10.2.2 Defining Variables of Structure Types 407
10.2.3 Structure Tag Names 408
10.2.4 Operations That Can Be Performed on Structures 408
10.3 Initializing Structures 409
10.4 Accessing Structure Members 409
10.5 Using Structures with Functions 411
10.6 typedef 411
10.7 Example: High-Performance Card Shuffling and Dealing Simulation 412
10.8 Unions 415
10.8.1 Union Declarations 415
10.8.2 Operations That Can Be Performed on Unions 415
10.8.3 Inidalizing Unions in Declarations 416
10.8.4 Demonstrating Unions 416
10.9 Bitwise Operators 417
10.9.1 Displaying an Unsigned Integer in Bits 418
10.9.2 Making Function displayBits More Scalable and Portable 420

10.9.3 Using the Bitwise AND, Inclusive OR, Exclusive OR and
Complement Operators 420

xii Contents

10.9.4 Using the Bitwise Left- and Right-Shift Operators 423
10.9.5 Bitwise Assignment Operators 425
10.10 Bit Fields 426
10.11 Enumeration Constants 429
10.12 Secure C Programming 431
I I CFile Processing 441
11.1 Introduction 442
11.2 Files and Streams 44)
11.3 Creating a Sequential-Access File 443
11.4 Reading Data from a Sequential-Access File 448
11.5 Random-Access Files 452
11.6 Creating a Random-Access File 453
11.7 Writing Data Randomly to a Random-Access File 455
11.8 Reading Data from a Random-Access File 458
11.9 Case Study: Transaction-Processing Program 459
11.10 Secure C Programming 465
I2 C Data Structures 476
12.1 Introduction 477
12.2 Self-Referential Structures 478
12.3 Dynamic Memory Allocation 478
12.4 Linked Lists 479
12.4.1 Function insert 485
12.4.2 Function delete 487
12.4.3 Function printList 488
12.5 Stacks 488
12.5.1 Function push 492
12.5.2 Function pop 492
12.5.3 Applications of Stacks 493
12.6 Queues 494
12.6.1 Function enqueue 498
12.6.2 Function dequeue 499
12.7 Trees 500
12.7.1 Function insertNode 504
12.7.2 Traversals: Functions inOrder, preOrder and postOrder 504
12.7.3 Duplicate Elimination 505
12.7.4 Binary Tree Search 505
12.7.5 Other Binary Tree Operations 505
12.8 Secure C Programming 506
I3 CPreprocessor 517
13.1 Introduction 518

13.2 #include Preprocessor Directive 518

13.3
13.4
13.5
13.6
13.7
13.8
13.9
13.10
13.11

14

14.1
14.2
14.3
14.4
14.5
14.6
14.7
14.8
14.9
14.10

15

15.1
15.2
15.3
15.4
15.5
15.6
15.7
15.8
15.9
15.10
15.11
15.12
15.13
15.14
15.15

#define Preprocessor Directive: Symbolic Constants
#define Preprocessor Directive: Macros
Conditional Compilation

#error and #pragma Preprocessor Directives

and ## Operators

Line Numbers

Predefined Symbolic Constants

Assertions

Secure C Programming

Other C Topics

Introduction

Redirecting I/O

Variable-Length Argument Lists

Using Command-Line Arguments

Notes on Compiling Multiple-Source-File Programs

Program Termination with exit and atexit

Suffixes for Integer and Floating-Point Literals

Signal Handling

Dynamic Memory Allocation: Functions calloc and realloc
Unconditional Branching with goto

C++ as a Better C; Introducing Object
Technology

Introduction

C++

A Simple Program: Adding Two Integers

C++ Standard Library

Header Files

Inline Functions

References and Reference Parameters

Empty Parameter Lists

Default Arguments

Unary Scope Resolution Operator

Function Overloading

Function Templates

Introduction to C++ Standard Library Class Template vector
Introduction to Object Technology and the UML
Wrap-Up

Contents

16 Introduction to Classes, Objects and Strings

16.1
16.2

Introduction
Defining a Class with a Member Function

xiii

519
519
521
522
523
523
523
524
524

529

530
530
531
533
534
536
537
538
540
541

547

548
548
549
551
552
554
556
561
561
563
564
567
570
576
579

586

587
587

Xiv

16.3
16.4
16.5
16.6
16.7
16.8
16.9

17

17.1
17.2
17.3
17.4
17.5
17.6
17.7
17.8
17.9

17.10
17.11

18

18.1
18.2
18.3
18.4
18.5
18.6
18.7
18.8

19

19.1
19.2
19.3
19.4
19.5
19.6
19.7
19.8
19.9

Contents

Defining a Member Function with a Parameter
Data Members, ser Functions and ger Functions
Initializing Objects with Constructors

Placing a Class in a Separate File for Reusability
Separating Interface from Implementation
Validating Data with ser Functions

Wrap-Up

Classes: A Deeper Look, Part |

Introduction

Time Class Case Study

Class Scope and Accessing Class Members

Separating Interface from Implementation

Access Functions and Utility Functions

Time Class Case Study: Constructors with Default Arguments
Destructors

When Constructors and Destructors Are Called

Time Class Case Study: A Subtle Trap—Returning a Reference to
a private Data Member

Default Memberwise Assignment

Wrap-Up

Classes: A Deeper Look, Part 2

Introduction

const (Constant) Objects and const Member Functions
Composition: Objects as Members of Classes

friend Functions and friend Classes

Using the this Pointer

static Class Members

Proxy Classes

Wrap-Up

Operator Overloading; Class string

Introduction

Using the Overloaded Operators of Standard Library Class string
Fundamentals of Operator Overloading

Overloading Binary Operators

Opverloading the Binary Stream Insertion and Stream Extraction Operators

Overloading Unary Operators

Overloading the Unary Prefix and Postfix ++ and -- Operators
Case Study: A Date Class

Dynamic Memory Management

590
593
599
603
606
612
617

623

624
625
632
633
634
637
642
643

646
649
652

658

659
659
667
673
675
680
685
689

695

696
697
700
701
702
706
707
708
713

Contents xv

19.10 Case Study: Array Class 715
19.10.1 Using the Array Class 716
19.10.2 Array Class Definition 719

19.11 Operators as Member Functions vs. Non-Member Functions 727

19.12 Converting between Types 727

19.13 explicit Constructors 729

19.14 Building a String Class 731

19.15 Wrap-Up 732

20 Object-Oriented Programming: Inheritance 743

20.1 Introduction 744
20.2 Base Classes and Derived Classes 744
20.3 protected Members 747
20.4 Relationship between Base Classes and Derived Classes 747
20.4.1 Creating and Using a CommissionEmpToyee Class 748
20.4.2 Creating a BasePTusCommissionEmployee Class Without
Using Inheritance 752
20.4.3 Creating a CommissionEmployee—BasePlusCommissionEmployee
Inheritance Hierarchy 758
20.4.4 CommissionEmployee—BasePTlusCommissionEmployee Inheritance
Hierarchy Using protected Data 763
20.4.5 CommissionEmployee—BasePTlusCommissionEmployee Inheritance
Hierarchy Using private Data 766
20.5 Constructors and Destructors in Derived Classes 771
20.6 public, protected and private Inheritance 771
20.7 Software Engineering with Inheritance 772
20.8 Wrap-Up 773

21 Object-Oriented Programming: Polymorphism 778

21.1 Introduction 779
21.2 Introduction to Polymorphism: Polymorphic Video Game 780
21.3 Relationships Among Objects in an Inheritance Hierarchy 780
21.3.1 Invoking Base-Class Functions from Derived-Class Objects 781
21.3.2 Aiming Derived-Class Pointers at Base-Class Objects 784
21.3.3 Derived-Class Member-Function Calls via Base-Class Pointers 785
21.3.4 Virtual Functions 787
21.4 Type Fields and switch Statements 793
21.5 Abstract Classes and Pure virtual Functions 793
21.6 Case Study: Payroll System Using Polymorphism 795
21.6.1 Creating Abstract Base Class Employee 796
21.6.2 Creating Concrete Derived Class SalariedEmpTloyee 800
21.6.3 Creating Concrete Derived Class CommissionEmpToyee 802

21.6.4 Creating Indirect Concrete Derived Class
BasePTusCommissionEmployee 804

21.6.5 Demonstrating Polymorphic Processing 806

xXVi Contents

21.7 (Optional) Polymorphism, Virtual Functions and Dynamic Binding

“Under the Hood” 810
21.8 Case Study: Payroll System Using Polymorphism and Runtime Type
Information with Downcasting, dynamic_cast, typeid and type_info 813
21.9 Virtual Destructors 817
21.10 Wrap-Up 817
22 Templates 823
22.1 Introduction 824
22.2 Function Templates 824
22.3 Overloading Function Templates 827
22.4 Class Templates 828
22.5 Nontype Parameters and Default Types for Class Templates 834
22.6 Wrap-Up 835
23 Stream Input/Output 839
23.1 Introduction 840
23.2 Streams 841
23.2.1 Classic Streams vs. Standard Streams 841
23.2.2 iostream Library Headers 842
23.2.3 Stream Input/Output Classes and Objects 842
23.3 Stream Output 845
23.3.1 Output of char * Variables 845
23.3.2 Character Output Using Member Function put 845
23.4 Stream Input 846
23.4.1 get and getline Member Functions 846
23.4.2 distream Member Functions peek, putback and ignore 849
23.4.3 Type-Safe I/O 849
23.5 Unformatted I/O Using read, write and gcount 849
23.6 Introduction to Stream Manipulators 850
23.6.1 Integral Stream Base: dec, oct, hex and setbase 851
23.6.2 Floating-Point Precision (precision, setprecision) 851
23.6.3 Field Width (width, setw) 853
23.6.4 User-Defined Output Stream Manipulators 854
23.7 Stream Format States and Stream Manipulators 856
23.7.1 Trailing Zeros and Decimal Points (showpoint) 856
23.7.2 Justification (Teft, right and internal) 857
23.7.3 DPadding (fi11, setfill) 859
23.7.4 Integral Stream Base (dec, oct, hex, showbase) 860
23.7.5 Floating-Point Numbers; Scientific and Fixed Notation
(scientific, fixed) 861
23.7.6 Uppercase/Lowercase Control (uppercase) 862
23.7.7 Specifying Boolean Format (boolalpha) 862

23.7.8 Setting and Resetting the Formar State via Member
Function flags 863

Contents xvii

23.8 Stream Error States 864
23.9 Tying an Output Stream to an Input Stream 866
23.10 Wrap-Up 867
24 Exception Handling: A Deeper Look 876
24.1 Introduction 877
24.2 Example: Handling an Attempt to Divide by Zero 877
24.3 When to Use Exception Handling 883
24.4 Rethrowing an Exception 884
24.5 Processing Unexpected Exceptions 885
24.6 Stack Unwinding 886
24.7 Constructors, Destructors and Exception Handling 888
24.8 Exceptions and Inheritance 888
24.9 Processing new Failures 889
24.10 Class unique_ptr and Dynamic Memory Allocation 892
24.11 Standard Library Exception Hierarchy 894
24.12 Wrap-Up 896
A Operator Precedence Charts 902
B ASCII Character Set 906
C Number Systems 907
C.1 Introduction 908
C.2 Abbreviating Binary Numbers as Octal and Hexadecimal Numbers 911
C.3 Converting Octal and Hexadecimal Numbers to Binary Numbers 912
C.4 Converting from Binary, Octal or Hexadecimal to Decimal 912
C.5 Converting from Decimal to Binary, Octal or Hexadecimal 913
C.6 Negative Binary Numbers: Two’s Complement Notation 915
D Game Programming: Solving Sudoku 920
D.1 Introduction 920
D.2 Deitel Sudoku Resource Center 921
D.3 Solution Strategies 921
D.4 Programming Sudoku Puzzle Solvers 925
D.5 Generating New Sudoku Puzzles 926
D.6 Conclusion 928
Appendices on the Web 929

Index 930

xviii Contents

Appendices E through H are PDF documents posted online at the book’s Companion
Website (located at www.pearsonhighered.com/deitel).

E Sorting: A Deeper Look
F Introduction to the New C Standard
G Using the Visual Studio Debugger

H Using the GNU Debugger

www.pearsonhighered.com/deitel

Preface

Welcome to the C programming language—and to C++, too! This book presents leading-
edge computing technologies for college students, instructors and software development
professionals.

At the heart of the book is the Deitel signature “live-code approach.” We present con-
cepts in the context of complete working programs, rather than in code snippets. Each
code example is followed by one or more sample executions. Read the online Before You
Begin section (www.deitel.com/books/chtp7/chtp7_BYB.pdf) to learn how to set up
your computer to run the hundreds of code examples. All the source code is available at
www . deitel.com/books/chtp7/ and www.pearsonhighered.com/deitel. Use the source
code we provide to run every program as you study it.

We believe that this book and its support materials will give you an informative, chal-
lenging and entertaining introduction to C. As you read the book, if you have questions,
send an e-mail to deitel@deitel.com—we’ll respond promptly. For book updates, visit
www.deitel.com/books/chtp7/, join our communities on Facebook (www.deitel.com/
deitelfan), Twitter (@deitel) and Google+ (gplus.to/deitel), and subscribe to the
Deitel® Buzz Online newsletter (www.deitel.com/newsletter/subscribe.html).

New and Updated Features
Here are some key features of C How to Program, J/e:

* Coverage of the New C standard. The previous edition of the book conformed to
“standard C” and included a detailed appendix on the C99 standard. The New
C Standard was approved just before C How to Program, 7/e went to publication.
The new standard incorporates both C99 and the more recent C1X—now re-
ferred to as C11 or simply “the C standard” since its approval in 2011. Support
for the new standard varies by compiler. The vast majority of our readership uses
cither the GNU gcc compiler—which supports several of the key features in the
new standard—or the Microsoft Visual C++ compiler. Microsoft supports only
a limited subset of the features that were added to C in C99 and C11—primarily
the features that are also required by the C++ standard. To accommodate all of
our readers, we placed the discussion of the new standard in optional, easy-to-use-
or-omit sections and in Appendix F, Introduction to the New C Standard. We've
also replaced various deprecated capabilities with newer preferred versions as a re-
sult of the new C standard.

* New Chapter 1. The new Chapter 1 engages students with intriguing facts and fig-
ures to get them excited about studying computers and computer programming.
The chapter includes a table of some of the research made possible by computers
and the Internet, current technology trends and hardware discussion, the data hier-
archy, a new section on social networking, a table of business and technology pub-

www.deitel.com/books/chtp7/chtp7_BYB.pdf
www.deitel.com/books/chtp7/
www.pearsonhighered.com/deitel
www.deitel.com/books/chtp7/
www.deitel.com/
www.deitel.com/newsletter/subscribe.html

XX

Preface

lications and websites that will help you stay up to date with the latest technology
news and trends, and updated exercises. We've included test-drives that show how
to run a command-line C program on Microsoft Windows, Linux and Mac OS X.

Secure C Programming Sections. We've added notes about secure C programming
to many of the C programming chapters. We've also posted a Secure C Program-
ming Resource Center at www. deitel.com/SecureC/. For more details, see the sec-
tion “A Note About Secure C Programming” in this Preface.

Focus on Performance Issues. C (and C++) are favored by designers of perfor-
mance-intensive applications such as operating systems, real-time systems, em-
bedded systems and communications systems, so we focus intensively on
performance issues.

“Making a Difference” Exercise Sets. We encourage you to use computers and the
Internet to research and solve problems that really matter. These exercises are
meant to increase awareness of important issues the world is facing. We hope
you'll approach them with your own values, politics and beliefs.

All Code Tested on Windows and Linux. We've tested every example and exercise
program using Visual C++ and GNU gcc in Windows and Linux, respectively.

Updated Coverage of C++ and Object-Oriented Programming. We updated
Chapters 15-24 on object-oriented programming in C++ with material from our
textbook C++ How to Program, 8/e.

Sorting: A Deeper Look. Sorting places data in order, based on one or more sort
keys. We begin our presentation of sorting with a simple algorithm in Chapter 6—
in Appendix E, we present a deeper look. We consider several algorithms and com-
pare them with regard to their memory consumption and processor demands. For
this purpose, we introduce Big O notation, which indicates how hard an algorithm
may have to work to solve a problem. Through examples and exercises, Appendix E
discusses the selection sort, insertion sort, recursive merge sort, recursive selection
sort, bucket sort and recursive Quicksort. Sorting is an interesting problem because
different sorting techniques achieve the same final result but they can vary hugely
in their consumption of memory, CPU time and other system resources.

Titled Programming Exercises. All the programming exercises are titled to help
instructors tune assignments for their classes.

Debugger Appendices. We've updated the Visual C++® and GNU gdb debugging
appendices.

Order of Evaluation. We added cautions about order of evaluation issues.
Additional Exercises. We added more function pointer exercises. We also added

a Fibonacci exercise project that improves the Fibonacci recursion example (tail
recursion).

Ci+-Style // Comments. We use the newer, more concise C++-style // com-
ments in preference to C’s older style /*...*/ comments.

C Standard Library. Section 1.7 references P.]J. Plauger’s Dinkumware website
(www. dinkumware.com/manuals/default.aspx) where students can find thor-
ough searchable documentation for the C Standard Library functions.

www.deitel.com/SecureC/
www.dinkumware.com/manuals/default.aspx

A Note About Secure C Programming xXi

A Note About Secure C Programming

Throughout this book, we focus on C programming fiundamentals. When we write each
How to Program book, we search the corresponding language’s standards document for the
features that we feel novices need to learn in a first programming course, and features that
existing programmers need to know to begin working in that language. We must also cover
programming fundamentals @nd computer-science fundamentals for novice program-
mers—our core audience.

Industrial-strength coding techniques in any programming language are beyond the
scope of an introductory textbook. For that reason, our Secure C Programming sections
present some key issues and techniques, and provide links and references so you can con-
tinue learning.

Experience has shown that it’s difficult to build industrial-strength systems that stand
up to attacks from viruses, worms, etc. Today, via the Internet, such attacks can be instan-
taneous and global in scope. Software vulnerabilities often come from simple program-
ming issues. Building security into software from the start of the development cycle can
greatly reduce costs and vulnerabilities.

The CERT® Coordination Center (www.cert.org) was created to analyze and
respond promptly to attacks. CERT—the Computer Emergency Response Team—pub-
lishes and promotes secure coding standards to help C programmers and others implement
industrial-strength systems that avoid the programming practices that open systems to
attacks. The CERT standards evolve as new security issues arise.

We've upgraded our code (as appropriate for an introductory book) to conform to var-
ious CERT recommendations. If you’ll be building C systems in industry, consider reading
The CERT C Secure Coding Standard (Robert Seacord, Addison-Wesley Professional, 2009)
and Secure Coding in C and C++ (Robert Seacord, Addison-Wesley Professional, 2006). The
CERT guidelines are available free online at waww. securecoding.cert.org. Mr. Seacord, a
technical reviewer for the C portion of this book, provided specific recommendations on
each of our new Secure C Programming sections. Mr. Seacord is the Secure Coding Manager
at CERT at Carnegie Mellon University’s Software Engineering Institute (SEI) and an
adjunct professor in the Carnegie Mellon University School of Computer Science.

The Secure C Programming sections at the ends of Chapters 2—13 discuss many impor-
tant topics, including testing for arithmetic overflows, using unsigned integer types, new
more secure functions in the C standard’s Annex K, the importance of checking the status
information returned by standard-library functions, range checking, secure random-number
generation, array bounds checking, techniques for preventing buffer overflows, input valida-
tion, avoiding undefined behaviors, choosing functions that return status information vs.
using similar functions that do not, ensuring that pointers are always NULL or contain valid
addresses, using C functions vs. using preprocessor macros, and more.

Web-Based Materials

This book is supported by substantial online materials. The book’s Companion Website
(www . pearsonhighered.com/deitel) contains source code for all the code examples and
the following appendices in searchable PDF format:

* Appendix E, Sorting: A Deeper Look
* Appendix F, Introduction to the New C Standard

www.cert.org
www.securecoding.cert.org
www.pearsonhighered.com/deitel

xxii Preface

* Appendix G, Using the Visual Studio Debugger
* Appendix H, Using the GNU Debugger

Dependency Charts

Figures 1 and 2 show the dependencies among the chapters to help instructors plan their
syllabi. C How to Program, 7/e is appropriate for CS1 and CS2 courses, and intermediate-
level C and C++ programming courses. The C++ part of the book assumes that you've

studied the C part.

C Chapter
Dependency
Chart

[Note: Arrows pointing into a

chapter indicate that chapter’s
dependencies.]

Streams and Files
9C Formatted Input/Output

Il CFile Processrng

ﬂ:ontrol Statements\

Introduction

| Introduction to Computers,

the Internet and the Web
|

Y

Intro to Programming

2 Intro to C Programming
|

Functions and Arrays

3 Structured Program
Development in C

4 C Program Control

Y

5 C Functions

Y

6C Arrays

Pointers and Strings
7C Pomters
8C Characters and Strings

Aggregate Types

10 C Structures, Unions, Bit
Manipulations and Enumerations

Other Topics and the New C Stantiard

|

13 C Preprocessor 14 Other C Topics

|

F Intro to the New C Standard

/ Data Structures
5.14-5.16 Recursion

'

% 12 C Data Structures

\E Sorting: A Deeper Look

Fig. | | C chapter dependency chart.

Teaching Approach xxiii

C++ Chapter Object-Based
Dependency Programming
Chart I5 C++ as a Better C;

Intro to Object Technology

[Note: Arrows pointing into a
chapter indicate that chapter’s
dependencies.]

16 Intro to Classes and Objects

17 Classes: A Deeper
Look, Part |

18 Classes: A Deeper
Look, Part 2

19 Operator Overloading

Object-Oriented
Programming
20 OOP: Inheritance <+——

23 Stream
Input/Output

21 OOP:
Polymorphism

24 Exception
Handling

22 Templates

Fig. 2 | C++ chapter dependency chart.

Teaching Approach

C How to Program, 7/e, contains a rich collection of examples. We focus on good software
engineering and stressing program clarity.

Syntax Shading. For readability, we syntax shade the code, similar to the way most IDEs
and code editors syntax color code. Our syntax-shading conventions are:

comments appear like this
keywords appear 1like this

all other code appears in black
Code Highlighting. We place gray rectangles around the key code.

Using Fonts for Emphasis. We place the key terms and the index’s page reference for each
defining occurrence in bold blue text for easy reference. We emphasize on-screen compo-
nents in the bold Helvetica font (e.g., the File menu) and C program text in the Lucida
font (for example, int x = 5;).

Objectives. The opening quotes are followed by a list of chapter objectives.

Hllustrations/Figures. Abundant charts, tables, line drawings, UML diagrams, programs
and program output are included.

Programming Tips. We include programming tips to help you focus on important aspects
of program development. These tips and practices represent the best we've gleaned from a
combined seven decades of programming and teaching experience.

xXXiv Preface

The Good Programming Practices call attention ro techniques that will help you pro-
duce programs that are clearer, more understandable and more maintainable.

% E Good Programming Practices

- Pointing out these Common Programming Errors reduces the likelihood that you'll
make them.

: 3? Common Programming Errors

% Error-Prevention Tips

These tips contain suggestions for exposing and removing bugs from your programs; many
describe aspects of C that prevent bugs from getting into programs in the first place.

_ Performance Tips

These tips highlight opportunities for making your programs run faster or minimizing the
amount of memory that they occupy.

= Portability Tips
\a» The Portability Tips help you write code that will run on a variety of platforms.

Software Engineering Observations

The Software Engineering Observations highlight architectural and design issues that
affect the construction of software systems, especially large-scale systems.

Summary Bullets. We present a section-by-section, bullet-list summary of the chapter.

Terminology. We include an alphabetized list of the important terms defined in each chap-
ter with the page number of each term’s defining occurrence for easy reference.

Self-Review Exercises and Answers. Extensive self-review exercises and answers are includ-
ed for self-study.
Exercises. Each chapter concludes with a substantial set of exercises including:
* simple recall of important terminology and concepts
* identifying the errors in code samples
* writing individual program statements
* writing small portions of C functions and C++ member functions and classes
* writing complete programs
* implementing major projects
Index. We've included an extensive index, which is especially useful when you use the

book as a reference. Defining occurrences of key terms are highlighted with a bold blue
page number.

Software Used in C How to Program, 7/e

We wrote C How to Program, 7/e using Microsoft’s free Visual C++ Express Edition (which
can compile both C and C++ programs and can be downloaded from www.microsoft. com/

www.microsoft.com/

C++ IDE Resource Kit xxXv

express/downloads/) and the free GNU C and C++ compilers (gcc.gnu.org/install/
binaries.htm1), which are already installed on most Linux systems and can be installed on
Mac OS X and Windows systems. Apple includes GNU C and C++ in their Xcode
development tools, which Mac OS X users can download from developer.apple.com/
technologies/tools/xcode.html.

For other free C and C++ compilers, visit:

www . thefreecountry.com/compilers/cpp.shtml

www . compilers.net/Dir/Compilers/CCpp.htm

www . freebyte.com/programming/cpp/#cppcompilers
en.wikipedia.org/wiki/List_of _compilers#C.2B.2B_compilers

C++ IDE Resource Kit

Your instructor may have ordered through your college bookstore a Value Pack edition of
C How to Program, 7/e that comes bundled with the C++ IDE Resource Kit—most C++
compilers also support C. This kit contains CD or DVD versions of:

* Microsoft® Visual Studio 2010 Express Edition (www.microsoft.com/express/)
¢ Dev C++ (www.bloodshed.net/downTload.html)

¢ NetBeans (netbeans.org/downloads/index.html)

* Eclipse (ec1ipse.org/downloads/)

¢ CodelLite (codelite.org/LiteEditor/DownTload)

You can also download these software packages from the websites specified above. The C++
IDE Resource Kit also includes access to a Companion Website containing step-by-step
written instructions and VideoNotes to help you get started with each development environ-
ment. If your book did not come with the C++ IDE Resource Kit, you can purchase access
to the Resource Kit’s Companion Website from www.pearsonhighered.com/cppidekit/.

CourseSmart Web Books

Today’s students and instructors have increasing demands on their time and money. Pear-
son has responded to that need by offering digital texts and course materials online
through CourseSmart. CourseSmart allows faculty to review course materials online, sav-
ing time and costs. It offers students a high-quality digital version of the text for less than
the cost of a print copy. Students receive the same content offered in the print textbook
enhanced by search, note-taking and printing tools. For more information, visit
www . coursesmart. com.

Instructor Resources

The following supplements are available to qualified instructors only through Pearson
Education’s Instructor Resource Center (www.pearsonhighered.com/qirc):

* PowerPoint® slides containing all the code and figures in the text, plus bulleted
items that summarize key points.

» Test Item File of multiple-choice questions (approximately two per book section)

www.microsoft.com/express/
www.bloodshed.net/download.html
www.pearsonhighered.com/cppidekit/
www.coursesmart.com
www.pearsonhighered.com/irc
www.thefreecountry.com/compilers/cpp.shtml
www.compilers.net/Dir/Compilers/CCpp.htm
www.freebyte.com/programming/cpp/#cppcompilersen.wikipedia.org/wiki/List_of_compilers#C.2B.2B_compilers
www.freebyte.com/programming/cpp/#cppcompilersen.wikipedia.org/wiki/List_of_compilers#C.2B.2B_compilers

xXXVvi Preface

o Solutions Manual with solutions to most of the end-of-chapter exercises. Please
check the Instructor Resource Center to determine which exercises have solutions.

Please do not write to us requesting access to the Pearson Instructor’s Resource Center.
Access is restricted to college instructors teaching from the book. Instructors may obtain
access only through their Pearson representatives. If you're not a registered faculty mem-
ber, contact your Pearson representative or visit www.pearsonhighered.com/educator/
replocator/.

Solutions are not provided for “project” exercises. Check out our Programming Proj-
ects Resource Center for lots of additional exercise and project possibilities
(www.deitel.com/ProgrammingProjects/).

Acknowledgments

We'd like to thank Abbey Deitel and Barbara Deitel for long hours devoted to this project.
We're fortunate to have worked with the dedicated team of publishing professionals at
Pearson. We appreciate the guidance, savvy and energy of Michael Hirsch, Editor-in-
Chief of Computer Science. Carole Snyder and Bob Engelhardt did a marvelous job man-

aging the review and production processes, respectively.

C How to Program, 7/e Reviewers

We wish to acknowledge the efforts of our reviewers. Under tight deadlines, they scruti-
nized the text and the programs and provided countless suggestions for improving the pre-
sentation: Dr. John F. Doyle (Indiana University Southeast), Hemanth H.M. (Software
Engineer at SonicWALL), Vytautus Leonavicius (Microsoft), Robert Seacord (Secure
Coding Manager at SEI/CERT, author of The CERT C Secure Coding Standard and tech-
nical expert for the international standardization working group for the programming lan-
guage C) and José Antonio Gonzdlez Seco (Parliament of Andalusia).

Other Recent Editions Reviewers

William Albrecht (University of South Florida), lan Barland (Radford University), Ed
James Beckham (Altera), John Benito (Blue Pilot Consulting, Inc. and Convener of ISO
WG14—the Working Group responsible for the C Programming Language Standard),
Alireza Fazelpour (Palm Beach Community College), Mahesh Hariharan (Microsoft),
Kevin Mark Jones (Hewlett Packard), Lawrence Jones, (UGS Corp.), Don Kostuch (In-
dependent Consultant), Xiaolong Li (Indiana State University), William Mike Miller
(Edison Design Group, Inc.), Tom Rethard (The University of Texas at Arlington), Ben-
jamin Seyfarth (University of Southern Mississippi), Gary Sibbitts (St. Louis Community
College at Meramec), William Smith (Tulsa Community College) and Douglas Walls (Se-
nior Staff Engineer, C compiler, Sun Microsystems).

Well, there you have it! C is a powerful programming language that will help you
write high-performance programs quickly and effectively. C scales nicely into the realm of
enterprise systems development to help organizations build their business-critical and mis-
sion-critical information systems. As you read the book, we would sincerely appreciate
your comments, criticisms, corrections and suggestions for improving the text. Please
address all correspondence to:

deitel@deitel.com

www.pearsonhighered.com/educator/replocator/
www.deitel.com/ProgrammingProjects/
www.pearsonhighered.com/educator/replocator/

About the Authors xxvii

We'll respond promptly, and post corrections and clarifications on:
www.deitel.com/books/chtp7/

We hope you enjoy working with C How to Program, Seventh Edition as much as we en-
joyed writing it!

Paul Deitel
Harvey Deitel
January 2012

About the Authors

Paul Deitel, CEO and Chief Technical Officer of Deitel & Associates, Inc., is a graduate
of MIT, where he studied Information Technology. Through Deitel & Associates, Inc.,
he has delivered hundreds of programming courses to industry clients, including Cisco,
IBM, Siemens, Sun Microsystems, Dell, Lucent Technologies, Fidelity, NASA at the Ken-
nedy Space Center, the National Severe Storm Laboratory, White Sands Missile Range,
Rogue Wave Software, Boeing, SunGard Higher Education, Stratus, Cambridge Technol-
ogy Partners, One Wave, Hyperion Software, Adra Systems, Entergy, CableData Systems,
Nortel Networks, Puma, iRobot, Invensys and many more. He and his co-author, Dr.
Harvey M. Deitel, are the world’s best-selling programming-language textbook/profes-
sional book/video authors.

Dr. Harvey Deitel, Chairman and Chief Strategy Officer of Deitel & Associates, Inc.,
has 50 years of experience in the computer field. Dr. Deitel earned B.S. and M.S. degrees
from MIT and a Ph.D. from Boston University. He has extensive college teaching experi-
ence, including earning tenure and serving as the Chairman of the Computer Science
Department at Boston College before founding Deitel & Associates, Inc., in 1991 with
his son, Paul Deitel. The Deitels’ publications have earned international recognition, with
translations published in Chinese, Korean, Japanese, German, Russian, Spanish, French,
Polish, Italian, Portuguese, Greek, Urdu and Turkish. Dr. Deitel has delivered hundreds
of professional programming seminars to major corporations, academic institutions, gov-
ernment organizations and the military.

Corporate Training from Deitel & Associates, Inc.

Deitel & Associates, Inc., founded by Paul Deitel and Harvey Deitel, is an internationally
recognized authoring, corporate training and software development organization special-
izing in computer programming languages, object technology, Android and iPhone app
development and Internet and web software technology. The company offers instructor-
led training courses delivered at client sites worldwide on major programming languages
and platforms, including C, C++, Visual C++®, Java™, Visual C#®, Visual Basic®,
XML®, Python®, object technology, Internet and web programming, Android app devel-
opment, Objective-C and iPhone app development and a growing list of additional pro-
gramming and software development courses. The company’s clients include many of the
wortld’s largest companies, government agencies, branches of the military, and academic
institutions.

Through its 36-year publishing partnership with Prentice Hall/Pearson, Deitel &
Associates, Inc., publishes leading-edge programming college textbooks, professional

www.deitel.com/books/chtp7/

xXXVi Preface

books and LiveLessons video courses. Deitel & Associates, Inc. and the authors can be
reached at:

deitel@deitel.com
To learn more about Deitel’s Dive Into® Series Corporate Training curriculum, visit:
www.deitel.com/training/

To request a proposal for worldwide on-site, instructor-led training at your company or
organization, e-mail deitel@deitel.com.

Individuals wishing to purchase Deitel books and LiveLessons video training can do so
through www.deitel.com. Bulk orders by corporations, the government, the military and
academic institutions should be placed directly with Pearson. For more information, visit
www . pearsoned.com/professional/index.htm.

www.deitel.com
www.pearsoned.com/professional/index.htm
www.deitel.com/training/

Introduction to Computers,
the Internet and the Web

The chief merit of language is
clearness.
—Galen

Our life is frittered away by
detail. ... Simplify, simplify.
—Henry David Thoreau

He had a wonderful talent for
packing thought close, and
rendering it portable.

—Thomas B. Macaulay

Man is still the most
extraordinary computer of all.
—]John F. Kennedy

Objectives
In this chapter, you'll learn:

= Basic computer concepts.

= The different types of
programming languages.

= The history of the C
programming language.

= The purpose of the C
Standard Library.

= The elements of a typical C
program development
environment.

= To test-drive a C application
in Windows, Linux and Mac
oS X.

= Some basics of the Internet
and the World Wide Web.

2 Chapter |

Introduction to Computers, the Internet and the Web

1.1 Introduction

1.2 Computers and the Internet in
Industry and Research

1.3 Hardware and Software

[.3.1 Moore’s Law
1.3.2 Computer Organization

Data Hierarchy

Programming Languages

The C Programming Language

C Standard Library

C++ and Other C-Based Languages
Object Technology

© b ®»~No ux»

Typical C Program Development
Environment

1.10.7 Standard Input, Standard Output and
Standard Error Streams

I.11 Test-Driving a C Application in
Windows, Linux and Mac OS X

[.11.I" Running a C Application from the
Windows Command Prompt

I.11.2 Running a C Application Using GNU
C with Linux

I.11.3 Running a C Application Using GNU
C with Mac OS X

1.12 Operating Systems
[.12.1 ' Windows—A Proprietary Operating
System
[.12.2 Linux—An Open-Source Operating
System

1.12.3 Apple’s Mac OS X; Apple’s iOS for
iPhone®, iPad® and iPod Touch®
Devices

[.10.I Phase I: Creating a Program [.124 Google’s Android

1.10.2 Phaseslz and 3: Preprocessing and 1.13 The Internet and World Wide Web
Compiling a C Program
1103 Phase 4: Linking 1.14 Some Key Software Development

1.104 Phase 5: Loading Terminology

1.105 Phase 6: Execution 1.15 Keeping Up-to-Date with
1.10.6 Problems That May Occur at Information Technologies

Execution Time
1.16 Web Resources

Terminology | Self-Review Exercises | Answers to Self-Review Exercises | Exercises
Making a Difference

1.1 Introduction

Welcome to C and C++! C is a concise yet powerful computer programming language
that’s appropriate for technically oriented people with little or no programming experience
and for experienced programmers to use in building substantial software systems. C How
to Program, Seventh Edition, is an effective learning tool for each of these audiences.

The core of the book emphasizes effective software engineering through the proven
methodologies of structured programming in C and object-oriented programming in C++. The
book presents hundreds of complete working programs and shows the outputs produced when
those programs are run on a computer. We call this the “live-code approach.” All of these
example programs may be downloaded from our website www. deitel.com/books/chtp7/.

Most people are familiar with the exciting tasks that computers perform. Using this
textbook, you’ll learn how to command computers to perform those tasks. It’s software
(i.e., the instructions you write to command computers to perform actions and make deci-
sions) that controls computers (often referred to as hardware).

1.2 Computers and the Internet in Industry and Research

These are exciting times in the computer field. Many of the most influential and successful
businesses of the last two decades are technology companies, including Apple, IBM, Hew-

www.deitel.com/books/chtp7/

.2 Computers and the Internet in Industry and Research 3

lett Packard, Dell, Intel, Motorola, Cisco, Microsoft, Google, Amazon, Facebook, Twit-
ter, Groupon, Foursquare, Yahoo!, eBay and many more. These companies are major
employers of people who study computer science, computer engineering, information sys-
tems or related disciplines. At the time of this writing, Apple was the most valuable com-
pany in the world. Figure 1.1 provides a few examples of the ways in which computers are
used in research and industry.

Name Description

Electronic health These might include a patient's medical history, prescriptions, immuni-

records zations, lab results, allergies, insurance information and more. Making
this information available to health care providers across a secure net-
work improves patient care, reduces the probability of error and
increases overall efficiency of the health care system.

Human Genome The Human Genome Project was founded to identify and analyze the

Project 20,000+ genes in human DNA. The project used computer programs
to analyze complex genetic data, determine the sequences of the bil-
lions of chemical base pairs that make up human DNA and store the
information in databases which have been made available over the
Internet to researchers in many fields.

AMBER™ Alert The AMBER (America’s Missing: Broadcast Emergency Response)
Alert System is used to find abducted children. Law enforcement
notifies TV and radio broadcasters and state transportation officials,
who then broadcast alerts on TV, radio, computerized highway signs,
the Internet and wireless devices. AMBER Alert recently partnered
with Facebook, whose users can “Like” AMBER Alert pages by location
to receive alerts in their news feeds.

World People worldwide can donate their unused computer processing power

Community Grid by installing a free secure software program that allows the World
Community Grid (www.worl1dcommunitygrid.org) to harness unused
capacity. This computing power, accessed over the Internet, is used in
place of expensive supercomputers to conduct scientific research
projects that are making a difference—providing clean water to third-
world countries, fighting cancer, growing more nutritious rice for
regions fighting hunger and more.

Medical imaging X-ray computed tomography (CT) scans, also called CAT (computer-
ized axial tomography) scans, take X-rays of the body from hundreds of
different angles. Computers are used to adjust the intensity of the X-
rays, optimizing the scan for each type of tissue, then to combine all of
the information to create a 3D image. MRI scanners use a technique
called magnetic resonance imaging, also to produce internal images
non-invasively.

One Laptop Per One Laptop Per Child (one. 1aptop.org) is providing low-power, inex-
Child (OLPC) pensive, Internet-enabled laptops to children in third-world coun-
tries—enabling learning and reducing the digital divide.

Fig. 1.1 | A few uses for computers. (Part | of 3.)

www.worldcommunitygrid.org

4 Chapter | Introduction to Computers, the Internet and the Web

Description
Cloud Cloud computing allows you to use software, hardware and informa-
computing tion stored in the “cloud”—i.e., accessed on remote computers via the

Internet and available on demand—rather than having it stored on
your personal computer. These services allow you to increase or
decrease resources to meet your needs at any given time, so they can be
more cost effective than purchasing expensive hardware to ensure that
you have enough storage and processing power to meet your needs at
their peak levels. Business applications often are expensive, and require
significant hardware to run them and knowledgeable support staff to
ensure that they’re running properly and securely. Using cloud comput-
ing services shifts the burden of managing these applications from the
business to the service provider, saving businesses money.

GPS Global Positioning System (GPS) devices use a network of satellites to
retrieve location-based information. Multiple satellites send time-
stamped signals to the GPS device, which calculates the distance to
each satellite based on the time the signal left the satellite and the time
the signal arrived. This information is used to determine the exact loca-
tion of the device. GPS devices can provide step-by-step directions and
help you locate nearby businesses (restaurants, gas stations, etc.) and
points of interest. GPS is used in numerous location-based Internet ser-
vices such as check-in apps to help you find your friends (e.g., Four-
square and Facebook), exercise apps such as RunKeeper that track the
time, distance and average speed of your outdoor jog, dating apps that
help you find a match nearby and apps that dynamically update chang-
ing traffic conditions.

Robots Robots can be used for day-to-day tasks (e.g., iRobot’s Roomba vacu-
uming robot), entertainment (e.g., robotic pets), military combat, deep
sea and space exploration (e.g., NASA’s Mars rover) and more.
RoboEarth (www. roboearth.org) is “a World Wide Web for robots.” It
allows robots to learn from each other by sharing information and thus
improving their abilities to perform tasks, navigate, recognize objects

and more.
E-mail, Instant Internet-based servers support all of your online messaging. E-mail
Messaging, messages go through a mail server that also stores the messages. Instant
Video Chat Messaging (IM) and Video Chat apps, such as AIM, Skype, Yahoo!
and FTP Messenger and others allow you to communicate with others in real

time by sending your messages and live video through servers. FTP (file
transfer protocol) allows you to exchange files between multiple com-
puters (e.g., a client computer such as your desktop and a file server)
over the Internet.

Internet TV Internet TV set-top boxes (such as Apple TV, Google TV and TiVo)
allow you to access an enormous amount of content on demand, such
as games, news, movies, television shows and more, and they help
ensure that the content is streamed to your TV smoothly.

Fig. 1.1 | A few uses for computers. (Part 2 of 3.)

www.roboearth.org

1.3 Hardware and Software 5

Name Description

Game Analysts expect global video game revenues to reach $91 billion by

programming 2015 (www.vg247.com/2009/06/23/global-industry-analysts-
predicts-gaming-market-to-reach-91-bi11ion-by-2015/). The most
sophisticated games can cost as much as $100 million to develop.
Activision’s Call of Duty: Black Ops—one of the best-selling games of all
time—earned $360 million in just one day (www. forbes. com/sites/
insertcoin/2011/03/11/call-of-duty-black-ops-now-the-best-
selling-video-game-of-all-time/)! Online social gaming, which
enables users worldwide to compete with one another over the Internet,
is growing rapidly. Zynga—creator of popular online games such as
Farmville and Mafia Wars—was founded in 2007 and already has over
200 million monthly users. To accommodate the growth in traffic,
Zynga is adding nearly 1,000 servers each week (techcrunch. com/
2010/09/22/zynga-moves-1-petabyte-of-data-daily-adds-1000-
servers-a-week/)!

Fig. 1.1 | A few uses for computers. (Part 3 of 3.)

1.3 Hardware and Software

In use today are more than a billion general-purpose computers, and billions more embed-
ded computers are used in cell phones, smartphones, tablet computers, home appliances,
automobiles and more. Computers can perform computations and make logical decisions
phenomenally faster than human beings can. Many of today’s personal computers can per-
form billions of calculations in one second—more than a human can perform in a lifetime.
Supercomputers are already performing thousands of trillions (quadrillions) of instructions
per second! In 2011, Fujitsu announced that its “K” supercomputer can perform over 10
quadrillion calculations per second (10 pezaflops)! To put that in perspective, the K super-
computer can perform in one second more than 1,000,000 calculations for every person on the
planet! And—these “upper limits” are growing quickly!

Computers process data under the control of sequences of instructions called com-
puter programs. These programs guide the computer through ordered actions specified by
people called computer programmers. The programs that run on a computer are referred
to as software. In this book, you’ll learn key programming methodologies that are
enhancing programmer productivity, thereby reducing software development costs—
structured programming (in C) and object-oriented programming in C++.

A computer consists of various devices referred to as hardware (e.g., the keyboard,
screen, mouse, hard disks, memory, DVD drives and processing units). Computing costs
are dropping dramatically, owing to rapid developments in hardware and software technol-
ogies. Computers that might have filled large rooms and cost millions of dollars decades
ago are now inscribed on silicon chips smaller than a fingernail, costing perhaps a few dol-
lars each. Ironically, silicon is one of the most abundant materials—it’s an ingredient in
common sand. Silicon-chip technology has made computing so economical that com-
puters have become a commodity.

www.vg247.com/2009/06/23/global-industry-analysts-predicts-gaming-market-to-reach-91-billion-by-2015/
www.vg247.com/2009/06/23/global-industry-analysts-predicts-gaming-market-to-reach-91-billion-by-2015/
www.forbes.com/sites/insertcoin/2011/03/11/call-of-duty-black-ops-now-the-best-selling-video-game-of-all-time/
www.forbes.com/sites/insertcoin/2011/03/11/call-of-duty-black-ops-now-the-best-selling-video-game-of-all-time/
www.forbes.com/sites/insertcoin/2011/03/11/call-of-duty-black-ops-now-the-best-selling-video-game-of-all-time/

6 Chapter I Introduction to Computers, the Internet and the Web

1.3.1 Moore’s Law

Every year, you probably expect to pay at least a little more for most products and services.
The opposite has been the case in the computer and communications fields, especially with
regard to the costs of hardware supporting these technologies. For many decades, hardware
costs have fallen rapidly. Every year or two, the capacities of computers have approximately
doubled inexpensively. This remarkable trend often is called Moore’s Law, named for the
person who identified it, Gordon Moore, co-founder of Intel—the leading manufacturer of
the processors in today’s computers and embedded systems. Moore’s Law and related obser-
vations apply especially to the amount of memory that computers have for programs, the
amount of secondary storage (such as disk storage) they have to hold programs and data over
longer periods of time, and their processor speeds—the speeds at which computers execute
their programs (i.e., do their work). Similar growth hpas occurred in the communications
field, in which costs have plummeted as enormous demand for communications bandwidth
(i.e., information-carrying capacity) has attracted intense competition. We know of no other
fields in which technology improves so quickly and costs fall so rapidly. Such phenomenal
improvement is truly fostering the nformation Revolution.

1.3.2 Computer Organization

Regardless of differences in physical appearance, computers can be envisioned as divided
into various logical units or sections (Fig. 1.2).

Logical unit Description

Input unit This “receiving” section obtains information (data and computer
programs) from input devices and places it at the disposal of the
other units for processing. Most information is entered into comput-
ers through keyboards, touch screens and mouse devices. Other
forms of input include receiving voice commands, scanning images
and barcodes, reading from secondary storage devices (such as hard
drives, DVD drives, Blu-ray Disc™ drives and USB flash drives—
also called “thumb drives” or “memory sticks”), receiving video from
a webcam and having your computer receive information from the
Internet (such as when you download videos from YouTube™ or e-
books from Amazon). Newer forms of input include position data
from a GPS device, and motion and orientation information from an
accelerometer in a smartphone or game controller (such as Micro-
soft® Kinect™, Wii™ Remote and PlayStation® Move).

Output unit This “shipping” section takes information that the computer has pro-
cessed and places it on various output devices to make it available for
use outside the computer. Most information that’s output from com-
puters today is displayed on screens, printed on paper, played as
audio or video on PCs and media players (such as Apple’s popular
iPods) and giant screens in sports stadiums, transmitted over the
Internet or used to control other devices, such as robots and “intelli-
gent” appliances.

Fig. 1.2 | Logical units of a computer. (Part | of 2.)

.4 Data Hierarchy 7

Logical unit Description

Memory unit This rapid-access, relatively low-capacity “warehouse” section retains
information that has been entered through the input unit, making it
immediately available for processing when needed. The memory unit
also retains processed information until it can be placed on output
devices by the output unit. Information in the memory unit is vola-
tile—it’s typically lost when the computer’s power is turned off. The
memory unit is often called either memory or primary memory.
Typical main memories on desktop and notebook computers contain
between 1 and 8 GB (GB stands for gigabytes; a gigabyte is approxi-
mately one billion bytes).

Arithmetic This “manufacturing” section performs calculations, such as addition,
and logicunit subtraction, multiplication and division. It also contains the decision
(ALU) mechanisms that allow the computer, for example, to compare two

items from the memory unit to determine whether they’re equal. In
today’s systems, the ALU is usually implemented as part of the next
logical unit, the CPU.

Central This “administrative” section coordinates and supervises the opera-
processing tion of the other sections. The CPU tells the input unit when infor-
unit (CPU) mation should be read into the memory unit, tells the ALU when

information from the memory unit should be used in calculations
and tells the output unit when to send information from the memory
unit to certain output devices. Many of today’s computers have mul-
tiple CPUs and, hence, can perform many operations simultane-
ously. A multi-core processor implements multiple processors on a
single integrated-circuit chip—a dual-core processor has two CPUs
and a quad-core processor has four CPUs. Today’s desktop computers
have processors that can execute billions of instructions per second.

Secondary This is the long-term, high-capacity “warehousing” section. Programs

storage unit or data not actively being used by the other units normally are placed
on secondary storage devices (e.g., your hard drive) until they’re again
needed, possibly hours, days, months or even years later. Information
on secondary storage devices is persistent—it’s preserved even when
the computer’s power is turned off. Secondary storage information
takes much longer to access than information in primary memory,
but the cost per unit of secondary storage is much less than that of
primary memory. Examples of secondary storage devices include CD
drives, DVD drives and flash drives, some of which can hold up to
512 GB. Typical hard drives on desktop and notebook computers
can hold up to 2 TB (TB stands for terabytes; a terabyte is approxi-
mately one trillion bytes).

Fig. 1.2 | Logical units of a computer. (Part 2 of 2.)

1.4 Data Hierarchy

Data items processed by computers form a data hierarchy that becomes larger and more
complex in structure as we progress from bits to characters to fields, and so on. Figure 1.3

8 Chapter | Introduction to Computers, the Internet and the Web

illustrates a portion of the data hierarchy. Figure 1.4 summarizes the data hierarchy’s lev-
els.

Sally Black

Tom Blue
— Judy Green File

Iris Orange
Randy Red

Judy Green Record

Judy Field
00000000 01001010 16-bit Unicode character J
1 Bit

Fig. 1.3 | Data hierarchy.

Level Description

Bits The smallest data item in a computer can assume the value 0 or the value 1.
Such a data item is called a bit (short for “binary digit”—a digit that can
assume one of two values). It’s remarkable that the impressive functions per-
formed by computers involve only the simplest manipulations of 0s and 1s—
examining a bits value, setting a bits value and reversing a bit’s value (from 1 to 0
or from 0 to 1).

Characters It’s tedious for people to work with data in the low-level form of bits. Instead,
they prefer to work with decimal digits (0=9), letters (A—Z and a—z), and special
symbols (e.g., $, @, %, &, *, (,),—, +, ", 1, 2 and /). Digits, letters and special
symbols are known as characters. The computer’s character set is the set of all
the characters used to write programs and represent data items. Computers pro-
cess only 1s and 0s, so every character is represented as a pattern of 1s and 0s.
The Unicode character set contains characters for many of the world’s lan-
guages. C supports several character sets, including 16-bit Unicode® characters

Fig. 1.4 | Levels of the data hierarchy. (Part | of 2.)

[.5 Programming Languages 9

Level Description

Characters that are composed of two bytes, each composed of eight bits. See Appendix B

(cont.) for more information on the ASCII (American Standard Code for Informa-
tion Interchange) character set—the popular subset of Unicode that represents
uppercase and lowercase letters, digits and some common special characters.

Fields Just as characters are composed of bits, fields are composed of characters or
bytes. A field is a group of characters or bytes that conveys meaning. For exam-
ple, a field consisting of uppercase and lowercase letters could be used to repre-
sent a person’s name, and a field consisting of decimal digits could represent a
person’s age.

Records Several related fields can be used to compose a record. In a payroll system, for
example, the record for an employee might consist of the following fields (pos-
sible types for these fields are shown in parentheses):

* Employee identification number (a whole number)

* Name (a string of characters)

* Address (a string of characters)

* Hourly pay rate (a number with a decimal point)

* Year-to-date earnings (a number with a decimal point)

* Amount of taxes withheld (a number with a decimal point)

Thus, a record is a group of related fields. In the preceding example, all the
fields belong to the same employee. A company might have many employees
and a payroll record for each one.

Files A file is a group of related records. [Noze: More generally, a file contains arbi-
trary data in arbitrary formats. In some operating systems, a file is viewed sim-
ply as a sequence of bytes—any organization of the bytes in a file, such as
organizing the data into records, is a view created by the application program-
mer.] Ifs not unusual for an organization to have many files, some containing
billions, or even trillions, of characters of information.

Database A database is an electronic collection of data that’s organized for easy access and
manipulation. The most popular database model is the relational database in
which data is stored in simple zables. A table includes records and frelds. For
example, a table of students might include first name, last name, major, year,
student ID number and grade point average. The data for each student is a
record, and the individual pieces of information in each record are the fields.
You can search, sort and manipulate the data based on its relationship to multi-
ple tables or databases. For example, a university might use data from the stu-
dent database in combination with databases of courses, on-campus housing,
meal plans, etc.

Fig. 1.4 | Levels of the data hierarchy. (Part 2 of 2.)

1.5 Programming Languages

Programmers write instructions in various programming languages, some directly under-
standable by computers and others requiring intermediate translation steps.

10 Chapter | Introduction to Computers, the Internet and the Web

Machine Languages

Any computer can directly understand only its own machine language, defined by its
hardware architecture. Machine languages generally consist of numbers (ultimately re-
duced to 1s and 0s). Such languages are cumbersome for humans.

Assembly Languages

Programming in machine language was simply too slow and tedious for most program-
mers. Instead, they began using Englishlike abbreviations to represent elementary opera-
tions. These abbreviations formed the basis of assembly languages. Translator programs
called assemblers were developed to convert assembly-language programs to machine lan-
guage. Although assembly-language code is clearer to humans, it’s incomprehensible to
computers until translated to machine language.

High-Level Languages

To speed the programming process even further, high-level languages were developed in
which single statements could be written to accomplish substantial tasks. High-level lan-
guages allow you to write instructions that look almost like everyday English and contain
commonly used mathematical expressions. Translator programs called compilers convert
high-level language programs into machine language.

The process of compiling a large high-level language program into machine language
can take a considerable amount of computer time. Interpreter programs were developed
to execute high-level language programs directly (without the need for compilation),
although more slowly than compiled programs. Scripting languages such as JavaScript
and PHP are processed by interpreters.

Performance Tip 1.1
;& Interpreters have an advantage over compilers in Internet scripting. An interpreted pro-
b gram can begin executing as soon as it’s downloaded to the client’s machine, without need-
ing to be compiled before it can execute. On the downside, interpreted scripts generally run
slower than compiled code.

1.6 The C Programming Language

C evolved from two previous languages, BCPL and B. BCPL was developed in 1967 by
Martin Richards as a language for writing operating systems and compilers. Ken Thomp-
son modeled many features in his B language after their counterparts in BCPL, and in
1970 he used B to create early versions of the UNIX operating system at Bell Laboratories.

The C language was evolved from B by Dennis Ritchie at Bell Laboratories and was
originally implemented in 1972. C initially became widely known as the development lan-
guage of the UNIX operating system. Many of today’s leading operating systems are
written in C and/or C++. C is mostly hardware independent—with careful design, it’s pos-
sible to write C programs that are portable to most computers.

Built for Performance
C is widely used to develop systems that demand performance, such as operating systems,
embedded systems, real-time systems and communications systems (Figure 1.5).

1.6 The C Programming Language 11

Application Description

Operating systems C’s portability and performance make it desirable for
implementing operating systems, such as Linux and
portions of Microsoft’s Windows and Google’s
Android. Apple’s OS X is built in Objective-C, which
was derived from C. We discuss some key popular
desktop/notebook operating systems and mobile
operating systems in Section 1.12.

Embedded systems The vast majority of the microprocessors produced
cach year are embedded in devices other than general-
purpose computers. These embedded systems include
navigation systems, smart home appliances, home
security systems, smartphones, robots, intelligent traf-
fic intersections and more. C is one of the most popu-
lar programming languages for developing embedded
systems, which typically need to run as fast as possible
and conserve memory. For example, a car’s anti-lock
brakes must respond immediately to slow or stop the
car without skidding; game controllers used for video
games should respond instantaneously to prevent any
lag between the controller and the action in the game,
and to ensure smooth animations.

Real-time systems Real-time systems are often used for “mission-criti-
cal” applications that require nearly instantaneous
response times. For example, an air-traffic-control
system must constantly monitor the positions and
velocities of the planes and report that information to
air-traffic controllers without delay so that they can
alert the planes to change course if there’s a possibil-
ity of a collision.

Communications systems Communications systems need to route massive
amounts of data to their destinations quickly to
ensure that things such as audio and video are deliv-
ered smoothly and without delay.

Fig. 1.5 | Some popular performance-oriented C applications.

By the late 1970s, C had evolved into what’s now referred to as “traditional C.” The
publication in 1978 of Kernighan and Ritchie’s book, The C Programming Language, drew
wide attention to the language. This became one of the most successful computer science
books of all time.

Standardization

The rapid expansion of C over various types of computers (sometimes called hardware
platforms) led to many variations that were similar but often incompatible. This was a se-
rious problem for programmers who needed to develop code that would run on several

12 Chapter | Introduction to Computers, the Internet and the Web

platforms. It became clear that a standard version of C was needed. In 1983, the X3]11
technical committee was created under the American National Standards Committee on
Computers and Information Processing (X3) to “provide an unambiguous and machine-
independent definition of the language.” In 1989, the standard was approved as ANSI
X3.159-1989 in the United States through the American National Standards Institute
(ANSI), then worldwide through the International Standards Organization (ISO). We
call this simply Standard C. This standard was updated in 1999—its standards document
is referred to as INCITS/ISO/IEC 9899-1999 and often referred to simply as C99. Copies
may be ordered from the American National Standards Institute (www.ansi.org) at web-
store.ansi.org/ansidocstore.

The New C Standard

We also introduce the new C standard (referred to as C11), which was approved as this
book went to publication. The new standard refines and expands the capabilities of C. Not
all popular C compilers support the new features. Of those that do, most implement only
a subset of the new features. We've integrated into the text (and appendices) in easy-to-
include-or-omit sections many of the new features implemented in leading compilers.

Portability Tip 1.1
:& Because C is a hardware-independent, widely available language, applications written in

C often can run with little or no modification on a range of different computer systems.

1.7 C Standard Library

As you’ll learn in Chapter 5, C programs consist of pieces called functions. You can pro-
gram all the functions that you need to form a C program, but most C programmers take
advantage of the rich collection of existing functions called the C Standard Library. Thus,
there are really two parts to learning how to program in C—learning the C language itself
and learning how to use the functions in the C Standard Library. Throughout the book,
we discuss many of these functions. P. J. Plauger’s book 7he Standard C Library is must
reading for programmers who need a deep understanding of the library functions, how to
implement them and how to use them to write portable code. We use and explain many
C library functions throughout this text. Visit the following website for the C Standard
Library documentation:

www . dinkumware.com/manuals/#Standard%20C%20Library

ow to Program, /e encourages a building-block approach to creating programs.
C How to Prog 7/ g building-block bt ting prog
Avoid “reinventing the wheel.” Instead, use existing pieces—this is called software reuse.

When programming in C you’ll typically use the following building blocks:
e C Standard Library functions
* Functions you create yourself
* Functions other people (whom you trust) have created and made available to you

The advantage of creating your own functions is that you’ll know exactly how they
work. You’ll be able to examine the C code. The disadvantage is the time-consuming effort
that goes into designing, developing and debugging new functions.

www.ansi.org
www.dinkumware.com/manuals/#Standard%20C%20Library

[.8 C++ and Other C-Based Languages 13

& Performance Tip 1.2
1 Using Standard C library functions instead of writing your own comparable versions can
= improve program performance, because these functions are carefully written to perform ef-

ficiently.

. Portability Tip 1.2

‘g Using Standard C library functions instead of writing your own comparable versions can
W' improve program portability, because these functions are used in virtually all Standard C
implementations.

1.8 C++ and Other C-Based Languages

C++ was developed by Bjarne Stroustrup at Bell Laboratories. It has its roots in C, provid-
ing a number of features that “spruce up” the C language. More important, it provides ca-
pabilities for object-oriented programming. Objects are essentially reusable software
components that model items in the real world. Using a modular, object-oriented design
and implementation approach can make software development groups more productive.

Chapters 15-24 present a condensed treatment of C++ selected from our book C++
How to Program, 8/e. As you study C++, check out our online C++ Resource Center at
www.deitel.com/cplusplus/. Figure 1.6 introduces several other popular C-based pro-
gramming languages.

Programming

language Description

Objective-C Objective-C is an object-oriented language based on C. It was developed in
the early 1980s and later acquired by NeXT, which in turn was acquired by
Apple. It has become the key programming language for the Mac OS X
operating system and all iOS-based devices (such as iPods, iPhones and
iPads).

Visual C# Microsoft’s three primary object-oriented programming languages are
Visual Basic, Visual C++ (based on C++) and C# (based on C++ and Java,
and developed for integrating the Internet and the web into computer
applications).

Java Sun Microsystems in 1991 funded an internal corporate research project
which resulted in the C++-based object-oriented programming language
called Java. A key goal of Java is to enable the writing of programs that will
run on a broad variety of computer systems and computer-controlled
devices. This is sometimes called “write once, run anywhere.” Java is used to
develop large-scale enterprise applications, to enhance the functionality of
web servers (the computers that provide the content we see in our web
browsers), to provide applications for consumer devices (smartphones, tele-
vision set-top boxes and more) and for many other purposes.

Fig. 1.6 | Popular C-based programming languages. (Part | of 2.)

www.deitel.com/cplusplus/

14 Chapter I Introduction to Computers, the Internet and the Web

Programming

language Description

PHP PHP—an object-oriented, open-source (see Section 1.12) scripting language
based on C and supported by a community of users and developers—is used
by many websites including Wikipedia and Facebook. PHP is platform inde-
pendenr—implementations exist for all major UNIX, Linux, Mac and Win-
dows operating systems. PHP also supports many databases, including
MySQL. Other languages similar in concept to PHP are Perl and Python.

JavaScript JavaScript—developed by Netscape—is the most widely used scripting lan-
guage. It’s primarily used to add programmability to web pages—for exam-
ple, animations and interactivity with the user. It’s provided with all major
web browsers.

Fig. 1.6 | Popular C-based programming languages. (Part 2 of 2.)

1.9 Object Technology

Building software quickly, correctly and economically remains an elusive goal at a time
when demands for new and more powerful software are soaring. Objects, or more precisely
the classes objects come from, are essentially reusable software components. There are date
objects, time objects, audio objects, video objects, automobile objects, people objects, etc.
Almost any noun can be reasonably represented as a software object in terms of attributes
(e.g., name, color and size) and behaviors (e.g., calculating, moving and communicating).
Software developers are discovering that using a modular, object-oriented design-and-
implementation approach can make software-development groups much more productive
than was possible with earlier techniques—object-oriented programs are often easier to
understand, correct and modify.

The Automobile as an Object

Let’s begin with a simple analogy. Suppose you want to drive a car and make it go faster by
pressing its accelerator pedal. What must happen before you can do this? Well, before you
can drive a car, someone has to design it. A car typically begins as engineering drawings,
similar to the blueprints that describe the design of a house. These drawings include the
design for an accelerator pedal. The pedal hides from the driver the complex mechanisms
that actually make the car go faster, just as the brake pedal hides the mechanisms that slow
the car, and the steering wheel /ides the mechanisms that turn the car. This enables people
with little or no knowledge of how engines, braking and steering mechanisms work to
drive a car easily.

Before you can drive a car, it must be builr from the engineering drawings that
describe it. A completed car has an actual accelerator pedal to make the car go faster, but
even that’s not enough—the car won’t accelerate on its own (hopefully!), so the driver
must press the pedal to accelerate the car.

Methods and Classes
Let’s use our car example to introduce some key object-oriented programming concepts.
Performing a task in a program requires a method. The method houses the program state-

1.9 Object Technology 15

ments that actually perform its tasks. It hides these statements from its user, just as a car’s
accelerator pedal hides from the driver the mechanisms of making the car go faster. In ob-
ject-oriented programming languages, we create a program unit called a class to house the
set of methods that perform the class’s tasks. For example, a class that represents a bank
account might contain one method to deposit money to an account, another to withdraw
money from an account and a third to inquire what the account’s current balance is. A class
is similar in concept to a car’s engineering drawings, which house the design of an accel-
erator pedal, steering wheel, and so on.

Instantiation

Just as someone has to build a car from its engineering drawings before you can actually
drive a car, you must build an object from a class before a program can perform the tasks
that the class’s methods define. The process of doing this is called instantiation. An object
is then referred to as an instance of its class.

Reuse

Just as a car’s engineering drawings can be reused many times to build many cars, you can
reuse a class many times to build many objects. Reuse of existing classes when building new
classes and programs saves time and effort. Reuse also helps you build more reliable and
effective systems, because existing classes and components often have gone through exten-
sive testing, debugging and performance tuning. Just as the notion of interchangeable parts
was crucial to the Industrial Revolution, reusable classes are crucial to the software revolu-
tion that has been spurred by object technology.

Messages and Method Calls

When you drive a car, pressing its gas pedal sends a message to the car to perform a task—
that is, to go faster. Similarly, you send messages to an object. Each message is implemented
as a method call that tells a method of the object to perform its task. For example, a pro-
gram might call a particular bank-account object’s deposir method to increase the account’s
balance.

Attributes and Instance Variables

A car, besides having capabilities to accomplish tasks, also has astributes, such as its color,
its number of doors, the amount of gas in its tank, its current speed and its record of total
miles driven (i.e., its odometer reading). Like its capabilities, the car’s attributes are repre-
sented as part of its design in its engineering diagrams (which, for example, include an
odometer and a fuel gauge). As you drive an actual car, these attributes are carried along
with the car. Every car maintains its own attributes. For example, each car knows how
much gas is in its own gas tank, but zor how much is in the tanks of ozher cars.

An object, similarly, has actributes that it carries along as it’s used in a program. These
attributes are specified as part of the object’s class. For example, a bank-account object has
a balance attribute that represents the amount of money in the account. Each bank-
account object knows the balance in the account it represents, but 7oz the balances of the
other accounts in the bank. Attributes are specified by the class’s instance variables.

Encapsulation
Classes encapsulate (i.e., wrap) attributes and methods into objects—an object’s attributes
and methods are intimately related. Objects may communicate with one another, but nor-

16 Chapter | Introduction to Computers, the Internet and the Web

mally they’re not allowed to know how other objects are implemented—implementation
details are hidden within the objects themselves. This information hiding is crucial to good
software engineering.

Inheritance

A new class of objects can be created quickly and conveniently by inheritance—the new
class absorbs the characteristics of an existing class, possibly customizing them and adding
unique characteristics of its own. In our car analogy, an object of class “convertible” cer-
tainly 7s an object of the more general class “automobile,” but more specifically, the roof can
be raised or lowered.

1.10 Typical C Program Development Environment

C systems generally consist of several parts: a program development environment, the lan-
guage and the C Standard Library. The following discussion explains the typical C devel-
opment environment shown in Fig. 1.7.

C programs typically go through six phases to be executed (Fig. 1.7). These are: edit,
preprocess, compile, link, load and execute. Although C How ro Program, Seventh Edition
is a generic C textbook (written independently of the details of any particular operating
system), we concentrate in this section on a typical Linux-based C system. [/Noze: The pro-
grams in this book will run with little or no modification on most current C systems,
including Microsoft Windows-based systems.] If you're not using a Linux system, refer to
the documentation for your system or ask your instructor how to accomplish these tasks
in your environment. Check out our C Resource Center at www.deitel.com/C to locate
“getting started” tutorials for popular C compilers and development environments.

1.10.1 Phase I: Creating a Program

Phase 1 consists of editing a file. This is accomplished with an editor program. Two edi-
tors widely used on Linux systems are vi and emacs. Software packages for the C/C++ in-
tegrated program development environments such as Eclipse and Microsoft Visual Studio
have editors that are integrated into the programming environment. You type a C program
with the editor, make corrections if necessary, then store the program on a secondary stor-
age device such as a hard disk. C program file names should end with the . c extension.

1.10.2 Phases 2 and 3: Preprocessing and Compiling a C Program

In Phase 2, the you give the command to compile the program. The compiler translates the
C program into machine language-code (also referred to as object code). In a C system, a
preprocessor program executes automatically before the compiler’s translation phase begins.
The C preprocessor obeys special commands called preprocessor directives, which indicate
that certain manipulations are to be performed on the program before compilation. These
manipulations usually consist of including other files in the file to be compiled and perform-
ing various text replacements. The most common preprocessor directives are discussed in the
carly chapters; a detailed discussion of preprocessor features appears in Chapter 13.

In Phase 3, the compiler translates the C program into machine-language code. A
syntax error occurs when the compiler cannot recognize a statement because it violates the

www.deitel.com/C

.10 Typical C Program Development Environment 17

Phase I:

Programmer creates program
in the editor and stores it on
disk.

Editor

Phase 2:
Preprocessor program
processes the code.

\%
V
) Phase 3:
Compiler creates
D object code and stores
NS———

Preprocessor

Compiler

A

it on disk.

Phase 4:

Linker links the object

code with the libraries,
creates an executable file and
stores it on disk.

Linker -

Primary
Memory

Loader — >

Phase 5:
Loader puts program
in memory.

Primary
Memory

Fig. 1.7 | Typical C development environment.

CPU -
Phase 6:

CPU takes each
instruction and
executes it, possibly
storing new data
values as the program
executes.

rules of the language. The compiler issues an error message to help you locate and fix the
incorrect statement. The C Standard does not specify the wording for error messages
issued by the compiler, so the error messages you see on your system may differ from those
on other systems. Syntax errors are also called compile errors, or compile-time errors.

18 Chapter | Introduction to Computers, the Internet and the Web

1.10.3 Phase 4: Linking

The next phase is called linking. C programs typically contain references to functions de-
fined elsewhere, such as in the standard libraries or in the private libraries of groups of pro-
grammers working on a particular project. The object code produced by the C compiler
typically contains “holes” due to these missing parts. A linker links the object code with
the code for the missing functions to produce an executable image (with no missing piec-
es). On a typical Linux system, the command to compile and link a program is called gcc
(the GNU C compiler). To compile and link a program named welcome.c, type

gcc welcome.c

at the Linux prompt and press the Enter key (or Return key). [Note: Linux commands are
case sensitive; make sure that each c is lowercase and that the letters in the filename are in
the appropriate case.] If the program compiles and links correctly, a file called a. out is pro-
duced. This is the executable image of our welcome.c program.

1.10.4 Phase 5: Loading

The next phase is called loading. Before a program can be executed, the program must first
be placed in memory. This is done by the loader, which takes the executable image from
disk and transfers it to memory. Additional components from shared libraries that support
the program are also loaded.

1.10.5 Phase 6: Execution

Finally, the computer, under the control of its CPU, executes the program one instruction
at a time. To load and execute the program on a Linux system, type ./a.out at the Linux
prompt and press Enter.

1.10.6 Problems That May Occur at Execution Time

Programs do not always work on the first try. Each of the preceding phases can fail because
of various errors that we'll discuss. For example, an executing program might attempt to
divide by zero (an illegal operation on computers just as in arithmetic). This would cause
the computer to display an error message. You would then return to the edit phase, make
the necessary corrections and proceed through the remaining phases again to determine
that the corrections work properly.

" Errors such as division-by-zero occur as a program runs, so they are called runtime errors
or execution-time errors. Divide-by-zero is generally a fatal error, i.e., one that causes the
program to terminate immediately without successfully performing its job. Nonfatal errors
allow programs to run to completion, often producing incorrect results.

5 a? Common Programming Error 1.1

1.10.7 Standard Input, Standard Output and Standard Error Streams

Most C programs input and/or output data. Certain C functions take their input from
stdin (the standard input stream), which is normally the keyboard, but stdin can be con-
nected to another stream. Data is often output to stdout (the standard output stream),
which is normally the computer screen, but stdout can be connected to another stream.

[.11 Test-Driving a C Application in Windows, Linux and Mac OS X 19

When we say that a program prints a result, we normally mean that the result is displayed
on a screen. Data may be output to devices such as disks and printers. There’s also a stan-
dard error stream referred to as stderr. The stderr stream (normally connected to the
screen) is used for displaying error messages. It’s common to route regular output data,
i.e., stdout, to a device other than the screen while keeping stderr assigned to the screen
so that the user can be immediately informed of errors.

I.11 Test-Driving a C Application in Windows, Linux
and Mac OS X

In this section, you’ll run and interact with your first C application. You'll begin by running
a guess-the-number game, which randomly picks a number from 1 to 1000 and prompts you
to guess it. If your guess is correct, the game ends. If your guess is not correct, the application
indicates whether your guess is higher or lower than the correct number. There’s no limit on
the number of guesses you can make but you should be able to guess any of the numbers in
this range correctly in 10 or fewer tries. There’s some nice computer science behind this
game—in Section 6.8, Searching Arrays, you'll explore the binary search technique.

For this test-drive only, we’ve modified this application from the exercise you’ll be
asked to create in Chapter 5. Normally this application randomly selects the correct
answers. The modified application uses the same sequence of correct answers every time
you execute the program (though this may vary by compiler), so you can use the same
guesses we use in this section and see the same results.

We'll demonstrate running a C application using the Windows Command Prompt, a
shell on Linux and a Terminal window in Mac OS X. The application runs similarly on all
three platforms. After you perform the test drive for your platform, you can try the ran-
domized version of the game, which we’ve provided with each test drive’s version of the
example in a subfolder named randomized_version.

Many development environments are available in which you can compile, build and
run C applications, such as GNU C, Dev C++, Microsoft Visual C++, CodeLite, Net-
Beans, Eclipse, Xcode, etc. Consult your instructor for information on your specific devel-
opment environment. Most C++ development environments can compile both C and
C++ programs.

In the following steps, you’ll run the application and enter various numbers to guess the
correct number. The elements and functionality that you see in this application are typical
of those you'll learn to program in this book. We use fonts to distinguish between features
you see on the screen (e.g., the Command Prompt) and elements that are not directly related
to the screen. We emphasize screen features like titles and menus (e.g., the File menu) in a
semibold sans-serif Helvetica font, and to emphasize filenames, text displayed by an applica-
tion and values you should enter into an application (e.g., GuessNumber or 500) we use a
sans-serif Lucida font. As you've noticed, the defining occurrence of each key term is set
in bold blue type. For the Windows version of the test drive in this section, we’ve modified
the background color of the Command Prompt window to make the Command Prompt win-
dows more readable. To modify the Command Prompt colors on your system, open a Com-
mand Prompt by selecting Start > All Programs > Accessories > Command Prompt, then right
click the title bar and select Properties. In the "Command Prompt" Properties dialog box that
appears, click the Colors tab, and select your preferred text and background colors.

20 Chapter | Introduction to Computers, the Internet and the Web

I.11.1 Running a C Application from the Windows Command Prompt

1. Checking your setup. It’s important to read the Before You Begin section at
www . deitel.com/books/chtp7/ to make sure that you've copied the book’s ex-
amples to your hard drive correctly.

2. Locating the completed application. Open a Command Prompt window. To
change to the directory for the completed GuessNumber application, type
cd C:\examples\ch01\GuessNumber\Windows, then press Enzer (Fig. 1.8). The
command cd is used to change directories.

E¥ Command Prompt EI@

C:\»>cd c:\examples\ch@l\Guesslumber\Windows

c:\examples'ch@l\GuessNumber\Windows >

Fig. 1.8 | Opening a Command Prompt window and changing the directory.

3. Running the GuessNumber application. Now that you are in the directory that
contains the GuessNumber application, type the command GuessNumber
(Fig. 1.9) and press Enter. [Note: GuessNumber . exe is the actual name of the ap-
plication; however, Windows assumes the . exe extension by default.]

B Command Prompt - GuessNumber EI@

c:\examples\ch@l\GuessNumber\Windows>Guesslumber

I have a number between 1 and 10@8.
Can you guess my number?
Please type your first guess.

? -
-

Fig. 1.9 | Running the GuessNumber application.

4. Entering your first guess. The application displays "Please type your first
guess."”, then displays a question mark (?) as a prompt on the next line
(Fig. 1.9). At the prompt, enter 500 (Fig. 1.10).

B Command Prompt - GuessNumber EI@

I have a number between 1 and 10@8.
Can you guess my number?

Please type your first guess.

? 500

Too high. Try again.

]

Fig. 1.10 | Entering your first guess.

5. Entering another guess. The application displays "Too high. Try again.", mean-
ing that the value you entered is greater than the number the application chose as

www.deitel.com/books/chtp7/

[.11 Test-Driving a C Application in Windows, Linux and Mac OS X 21

the correct guess. So, you should enter a lower number for your next guess. At the
prompt, enter 250 (Fig. 1.11). The application again displays "Too high. Try
again.", because the value you entered is still greater than the number that the
application chose.

B Command Prompt - GuessNumber EI@

I have a number between 1 and 10@8. -
Can you guess my number?
Please type your first guess.
? 500

Too high. Try again.

? 258

Too high. Try again.

]

Fig. 1.11 | Entering a second guess and receiving feedback.

6. Entering additional guesses. Continue to play the game by entering values until
you guess the correct number. The application will display "Excellent! You
guessed the number!" (Fig. 1.12).

7. Playing the game again or exiting the application. After you guess correctly, the ap-
plication asks if you’d like to play another game (Fig. 1.12). At the prompt, enter-
ing 1 causes the application to choose a new number and displays the message
“Please type your first guess.” followed by a question-mark prompt
(Fig. 1.13), so you can make your first guess in the new game. Entering 2 ends the
application and returns you to the application’s directory at the Command Prompt

B Command Prompt - GuessNumber EI@
Too high. Try again. -
2 125

Too high. Try again.
? b2

Too high. Try again.
2 31

Too low. Try again.

? 46

Too high. Try again.
? 39

Too low. Try again.

2 43

Too high. Try again.
2 41

Too low. Try again.

? 42

m

Excellent! You guessed the number!
lould you like to play again?
Please type (l=yes, 2=no)? _

Fig. 1.12 | Entering additional guesses and guessing the correct number.

22 Chapter | Introduction to Computers, the Internet and the Web

(Fig. 1.14). Each time you execute this application from the beginning (i.e., Step 3),
it will choose the same numbers for you to guess.

8. Close the Command Prompt window.

B Command Prompt - GuessNumber EI@

Excellent! You guessed the number!
lould you like to play again?
Please type (l=yes, 2=no)? 1

I have a number between 1 and 10@8.
Can you guess my number?
Please type your first guess.

? .
-

Fig. 1.13 | Playing the game again.

E¥ Command Prompt EI@

Excellent! You guessed the number!
lould you like to play again?
Please type (l=yes, 2=no)? 2

C:\examples'ch@l\GuessNumber\Windows>

Fig. 1.14 | Exiting the game.

1.11.2 Running a C Application Using GNU C with Linux
For this test drive, we assume that you know how to copy the examples into your home
directory. Please see your instructor if you have any questions regarding copying the files
to your Linux system. Also, for the figures in this section, we use a bold font to point out
the user input required by each step. The prompt in the shell on our system uses the tilde
(~) character to represent the home directory, and each prompt ends with the dollar-sign
($) character. The prompt will vary among Linux systems.
1. Checking your setup. It's important to read the Before You Begin section at
www . deitel.com/books/chtp7/ to make sure that you've copied the book’s ex-
amples to your hard drive correctly.

2. Locating the completed application. From a Linux shell, change to the completed
GuessNumber application directory (Fig. 1.15) by typing

cd examples/ch01/GuessNumber/GNU

then pressing Enter. The command cd is used to change directories.

~$ cd examples/ch01/GuessNumber/GNU
~/examples/ch01/GuessNumber/GNU$

Fig. 1.15 | Changing to the GuessNumber application’s directory.

www.deitel.com/books/chtp7/

[.11 Test-Driving a C Application in Windows, Linux and Mac OS X 23

3. Compiling the GuessNumber application. To run an application on the GNU
C++ compiler, you must first compile it by typing

gcc GuessNumber.c -o GuessNumber

as in Fig. 1.16. This command compiles the application and produces an execut-
able file called GuessNumber-.

~/examples/ch01/GuessNumber/GNU$ gcc GuessNumber.c -o GuessNumber
~/examples/ch01/GuessNumber/GNU$

Fig. 1.16 | Compiling the GuessNumber application using the gcc command.

4. Running the GuessNumber application. To run the executable file GuessNumber,
type ./GuessNumber at the next prompt, then press Enter (Fig. 1.17).

~/examples/ch01/GuessNumber/GNU$./GuessNumber

I have a number between 1 and 1000.
Can you guess my number?

Please type your first guess.

?

Fig. 1.17 | Running the GuessNumber application.

5. Entering your first guess. The application displays "Please type your first
guess.", then displays a question mark (?) as a prompt on the next line
(Fig. 1.17). At the prompt, enter 500 (Fig. 1.18).

~/examples/ch01/GuessNumber/GNU$./GuessNumber

I have a number between 1 and 1000.
Can you guess my number?

Please type your first guess.

? 500

Too high. Try again.

?

Fig. 1.18 | Entering an initial guess.

6. Entering another guess. The application displays "Too high. Try again.", mean-
ing that the value you entered is greater than the number the application chose as
the correct guess (Fig. 1.18). At the next prompt, enter 250 (Fig. 1.19). This time
the application displays "Too Tow. Try again.", because the value you entered is
less than the correct guess.

7. Entering additional guesses. Continue to play the game (Fig. 1.20) by entering
values until you guess the correct number. When you guess correctly, the appli-
cation displays "Excellent! You guessed the number!"

24 Chapter | Introduction to Computers, the Internet and the Web

~/examples/ch01/GuessNumber/GNUS$./GuessNumber

I have a number between 1 and 1000.
Can you guess my number?
Please type your first guess.

? 500

Too high. Try again.
? 250

Too low. Try again.
?

Fig. 1.19 | Entering a second guess and receiving feedback.

Too low. Try again.

? 375

Too low. Try again.
? 437

Too high. Try again.
? 406

Too high. Try again.
? 391

Too high. Try again.
? 383

Too low. Try again.
? 387

Too high. Try again.
? 385

Too high. Try again.
? 384

Excellent! You guessed the number!
Would you 1like to play again?
Please type (l=yes, 2=no)?

Fig. 1.20 | Entering additional guesses and guessing the correct number.

8. Playing the game again or exiting the application. After you guess the correct
number, the application asks if you’d like to play another game. At the prompt,
entering 1 causes the application to choose a new number and displays the mes-
sage "Please type your first guess." followed by a question-mark prompt
(Fig. 1.21) so that you can make your first guess in the new game. Entering 2 ends
the application and returns you to the application’s directory in the shell
(Fig. 1.22). Each time you execute this application from the beginning (i.e., Step
4), it will choose the same numbers for you to guess.

Excellent! You guessed the number!
Would you Tike to play again?
Please type (l=yes, 2=no)? 1

I have a number between 1 and 1000.
Can you guess my number?

Please type your first guess.

?

Fig. 1.21 | Playing the game again

[.11 Test-Driving a C Application in Windows, Linux and Mac OS X 25

Excellent! You guessed the number!
Would you Tike to play again?
Please type (l=yes, 2=no)? 2

~/examples/ch01/GuessNumber/GNU$

Fig. 1.22 | Exiting the game.

1.11.3 Running a C Application Using GNU C with Mac OS X

For the figures in this section, we use a bold font to point out the user input required by
each step. You'll use Mac OS X’s Terminal window to perform this test dive. To open a
Terminal window, click the Spotlight Search icon in the upper-right corner of your screen,
then type Terminal to locate the Terminal application. Under Applications in the Spotlight
Search results, select Terminal to open a Terminal window. The prompt in a Terminal win-
dow has the form hostName: ~ userFolder$ to represent your user directory. For the figures
in this section we remove the hostName: part and used the generic name userFolder to rep-
resent your user account’s folder.

1. Checking your setup. It’s important to read the Before You Begin section at
www . deitel.com/books/chtp7/ to make sure that you've copied the book’s ex-
amples to your hard drive correctly. We assume that the examples are located in
your user account’s Documents/examples folder.

2. Locating the completed application. In the Terminal window, change to the com-
pleted GuessNumber application directory (Fig. 1.23) by typing

cd Documents/examples/ch01/GuessNumber/GNU

then pressing Enter. The command cd is used to change directories.

hostName:~ userFolder$ cd Documents/examples/ch01l/GuessNumber/GNU
hostName:GNU$

Fig. 1.23 | Changing to the GuessNumber application’s directory.

3. Compiling the GuessNumber application. To run an application on the GNU C
compiler, you must first compile it by typing

gcc GuessNumber.c -o GuessNumber

as in Fig. 1.24. This command compiles the application and produces an execut-
able file called GuessNumber.

hostName:GNU~ userFolder$ gcc GuessNumber.c -o GuessNumber
hostName:GNU~ userFolder$

Fig. 1.24 | Compiling the GuessNumber application using the gcc command.

4. Running the GuessNumber application. To run the executable file GuessNumber,
type . /GuessNumber at the next prompt, then press Enzer (Fig. 1.25).

www.deitel.com/books/chtp7/

26 Chapter | Introduction to Computers, the Internet and the Web

hostName:GNU~ userFolder$./GuessNumber

I have a number between 1 and 1000.
Can you guess my number?

Please type your first guess.

?

Fig. 1.25 | Running the GuessNumber application.

5. Entering your first guess. The application displays "Please type your first
guess.", then displays a question mark (?) as a prompt on the next line
(Fig. 1.25). At the prompt, enter 500 (Fig. 1.26).

hostName:GNU~ userFolder$./GuessNumber

I have a number between 1 and 1000.
Can you guess my number?

Please type your first guess.

? 500

Too low. Try again.
?

Fig. 1.26 | Entering an initial guess.

6. Entering another guess. The application displays "Too low. Try again.”
(Fig. 1.26), meaning that the value you entered is greater than the number the ap-
plication chose as the correct guess. At the next prompt, enter 750 (Fig. 1.27).
Again the application displays "Too Tow. Try again.", because the value you en-
tered is less than the correct guess.

hostName:GNU~ userFolder$./GuessNumber

I have a number between 1 and 1000.
Can you guess my number?
Please type your first guess.

? 500

Too Tow. Try again.
? 750

Too low. Try again.
?

Fig. 1.27 | Entering a second guess and receiving feedback.

7. Entering additional guesses. Continue to play the game (Fig. 1.28) by entering
values until you guess the correct number. When you guess correctly, the appli-
cation displays "Excellent! You guessed the number!"

8. Playing the game again or exiting the application. After you guess the correct
number, the application asks if you’d like to play another game. At the prompt,

Operating Systems

27

Too Tow. Try again.

7 825

Too high. Try again.

? 788

Too low. Try again.

? 806

Too Tow. Try again.

7 815

Too high. Try again.

7 811

Too high. Try again.

7 808

Excellent! You guessed the number!
Would you 1like to play again?
Please type (l=yes, 2=no)?

Fig. 1.28 | Entering additional guesses and guessing the correct number.

entering 1 causes the application to choose a new number and displays the mes-
sage "Please type your first guess." followed by a question-mark prompt
(Fig. 1.29) so you can make your first guess in the new game. Entering 2 ends the
application and returns you to the application’s folder in the Terminal window
(Fig. 1.30). Each time you execute this application from the beginning (i.e., Step

3), it will choose the same numbers for you to guess.

Excellent! You guessed the number!
Would you Tike to play again?
Please type (l=yes, 2=no)? 1

Can you guess my number?
Please type your first guess.
?

I have a number between 1 and 1000.

Fig. 1.29 | Playing the game again.

Excellent! You guessed the number!
Would you 1like to play again?
Please type (l=yes, 2=no)? 2

hostName:GNU~ userFolder$

Fig. 1.30 | Exiting the game.

1.12 Operating Systems

Operating systems are software systems that make using computers more convenient for
users, application developers and system administrators. They provide services that allow
each application to execute safely, efficiently and concurrently (i.e., in parallel) with other

28 Chapter | Introduction to Computers, the Internet and the Web

applications. The software that contains the core components of the operating system is
called the kernel. Popular desktop operating systems include Linux, Windows and Mac
OS X. Popular mobile operating systems used in smartphones and tablets include Google’s
Android, Apple’s iOS (for iPhone, iPad and iPod Touch devices), BlackBerry OS and
Windows Phone 7. You can develop applications in C for all four of the following key op-
erating systems, including several of the latest mobile operating systems.

1.12.1 Windows—A Proprietary Operating System

In the mid-1980s, Microsoft developed the Windows operating system, consisting of a
graphical user interface built on top of DOS—an enormously popular personal-computer
operating system that users interacted with by zping commands. Windows borrowed from
many concepts (such as icons, menus and windows) developed by Xerox PARC and pop-
ularized by eatly Apple Macintosh operating systems. Windows 7 is Microsoft’s latest op-
erating system—its features include enhancements to the user interface, faster startup
times, further refinement of security features, touch-screen and multitouch support, and
more. Windows is a proprietary operating system—it’s controlled by Microsoft exclusively.
Windows is by far the world’s most widely used operating system.

1.12.2 Linux—An Open-Source Operating System

The Linux operating system is perhaps the greatest success of the gpen-source movement.
Open-source software departs from the proprietary software development style that dom-
inated software’s early years. With open-source development, individuals and companies
contribute their efforts in developing, maintaining and evolving software in exchange for
the right to use that software for their own purposes, typically at no charge. Open-source
code is often scrutinized by a much larger audience than proprietary software, so errors of-
ten get removed faster. Open source also encourages more innovation. Enterprise systems
companies, such as IBM, Oracle and many others, have made significant investments in
Linux open-source development.

Some key organizations in the open-source community are the Eclipse Foundation
(the Eclipse Integrated Development Environment helps programmers conveniently
develop software), the Mozilla Foundation (creators of the Firefox web browser), the
Apache Software Foundation (creators of the Apache web server used to develop web-
based applications) and SourceForge (which provides the tools for managing open-source
projects—it has over 322,000 of them under development). Rapid improvements to com-
puting and communications, decreasing costs and open-source software have made it
much easier and more economical to create a software-based business now than just a
decade ago. A great example is Facebook, which was launched from a college dorm room
and built with open-source software.

The Linux kernel is the core of the most popular open-source, freely distributed, full-
featured operating system. It’s developed by a loosely organized team of volunteers and is
popular in servers, personal computers and embedded systems. Unlike that of proprietary
operating systems like Microsoft’'s Windows and Apple’s Mac OS X, Linux source code
(the program code) is available to the public for examination and modification and is free
to download and install. As a result, Linux users benefit from a community of developers

.12 Operating Systems 29

actively debugging and improving the kernel, an absence of licensing fees and restrictions,
and the ability to completely customize the operating system to meet specific needs.

A variety of issues—such as Microsoft’s market power, the small number of user-
friendly Linux applications and the diversity of Linux distributions, such as Red Hat
Linux, Ubuntu Linux and many others—have prevented widespread Linux use on
desktop computers. Linux 4as become extremely popular on servers and in embedded sys-
tems, such as Google’s Android-based smartphones.

1.12.3 Apple’s Mac OS X; Apple’s iOS for iPhone®, iPad” and iPod
Touch® Devices

Apple, founded in 1976 by Steve Jobs and Steve Wozniak, quickly became a leader in per-
sonal computing. In 1979, Jobs and several Apple employees visited Xerox PARC (Palo
Alto Research Center) to learn about Xerox’s desktop computer that featured a graphical
user interface (GUI). That GUI served as the inspiration for the Apple Macintosh,
launched with much fanfare in a memorable Super Bowl ad in 1984.

The Objective-C programming language, created by Brad Cox and Tom Love at
Stepstone in the early 1980s, added capabilities for object-oriented programming (OOP)
to the C programming language. Steve Jobs left Apple in 1985 and founded NeXT Inc.
In 1988, NeXT licensed Objective-C from StepStone and developed an Objective-C com-
piler and libraries which were used as the platform for the NeXTSTEP operating system’s
user interface and Interface Builder—used to construct graphical user interfaces.

Jobs returned to Apple in 1996 when Apple bought NeXT. Apple’s Mac OS X oper-
ating system is a descendant of NeXTSTEP. Apple’s proprietary operating system, iOS, is
derived from Apple’s Mac OS X and is used in the iPhone, iPad and iPod Touch devices.

1.12.4 Google’s Android

Android—the fastest growing mobile and smartphone operating system—is based on the
Linux kernel and Java. Experienced Java programmers can quickly dive into Android de-
velopment. One benefit of developing Android apps is the openness of the platform. The
operating system is open source and free.

The Android operating system was developed by Android, Inc., which was acquired
by Google in 2005. In 2007, the Open Handset Alliance™—a consortium of 34 compa-
nies initially and 84 by 2011—was formed to continue developing Android. As of June
2011, more than 500,000 Android smartphones were being activated each day!! Android
smartphones are now outselling iPhones in the United States.”? The Android operating
system is used in numerous smartphones (such as the Motorola Droid, HTC EVO™ 4G,
Samsung Vibrant™ and many more), e-reader devices (such as the Barnes and Noble
Nook™), tablet computers (such as the Dell Streak and the Samsung Galaxy Tab), in-
store touch-screen kiosks, cars, robots, multimedia players and more.

1. news.cnet.com/8301-13506_3-20074956-17/google-500000-android-devices-activated-
each-day/.
2. www.pcworld.com/article/196035/android_outsells_the_iphone_no_big_surprise.html.

www.pcworld.com/article/196035/android_outsells_the_iphone_no_big_surprise.html

30 Chapter | Introduction to Computers, the Internet and the Web

1.13 The Internet and World Wide Web

The Internet—a global network of computers—was made possible by the convergence of
computing and communications technologies. In the late 1960s, ARPA (the Advanced Re-

search Projects Agency) rolled out blueprints for networking the main computer systems

of about a dozen ARPA-funded universities and research institutions. Academic research

was about to take a giant leap forward. ARPA proceeded to implement the ARPANET,

which eventually evolved into today’s Internet. It rapidly became clear that communicat-

ing quickly and easily via electronic mail was the key early benefit of the ARPANET. This

is true even today on the Internet, which facilitates communications of all kinds among
the world’s Internet users.

Packet Switching
A primary goal for ARPANET was to allow multiple users to send and receive information
simultaneously over the same communications paths (e.g., phone lines). The network op-
erated with a technique called packet switching, in which digital data was sent in small
bundles called packets. The packets contained address, error-control and sequencing infor-
mation. The address information allowed packets to be routed to their destinations. The
sequencing information helped in reassembling the packets—which, because of complex
routing mechanisms, could actually arrive out of order—into their original order for pre-
sentation to the recipient. Packets from different senders were intermixed on the same lines
to efficiently use the available bandwidth. This packet-switching technique greatly re-
duced transmission costs, as compared with the cost of dedicated communications lines.
The network was designed to operate without centralized control. If a portion of the
network failed, the remaining working portions would still route packets from senders to
receivers over alternative paths for reliability.

TCP/IP
The protocol (i.e., set of rules) for communicating over the ARPANET became known as
TCP—the Transmission Control Protocol. TCP ensured that messages were properly
routed from sender to receiver and that they arrived intact.

As the Internet evolved, organizations worldwide were implementing their own net-
works. One challenge was to get these different networks to communicate. ARPA accom-
plished this with the development of IP—the Internet Protocol, truly creating a network

of networks, the current architecture of the Internet. The combined set of protocols is now
commonly called TCP/IP.

World Wide Web, HTML, HTTP

The World Wide Web allows you to execute web-based applications and to locate and
view multimedia-based documents on almost any subject over the Internet. The web is a
relatively recent creation. In 1989, Tim Berners-Lee of CERN (the European Organiza-
tion for Nuclear Research) began to develop a technology for sharing information via hy-
perlinked text documents. Berners-Lee called his invention the HyperText Markup
Language (HTML). He also wrote communication protocols to form the backbone of his
new information system, which he called the World Wide Web. In particular, he wrote
the Hypertext Transfer Protocol (HTTP)—a communications protocol used to send in-
formation over the web. The URL (Uniform Resource Locator) specifies the address (i.e.,

[.14 Some Key Software Development Terminology 31

location) of the web page displayed in the browser window. Each web page on the Internet
is associated with a unique URL. Hypertext Transfer Protocol Secure (HTTPS) is the
standard for transferring encrypted data on the web.

Mosaic, Netscape, Emergence of Web 2.0

Web use exploded with the availability in 1993 of the Mosaic browser, which featured a
user-friendly graphical interface. Marc Andreessen, whose team at the National Center for
Supercomputing Applications developed Mosaic, went on to found Netscape, the compa-
ny that many people credit with igniting the explosive Internet economy of the late 1990s.

In 2003 there was a noticeable shift in how people and businesses were using the web
and developing web-based applications. The term Web 2.0 was coined by Dale Dougherty
of O’Reilly Media? in 2003 to describe this trend. Generally, Web 2.0 companies use the
web as a platform to create collaborative, community-based sites (e.g., social networking
sites, blogs, wikis).

Companies with Web 2.0 characteristics are Google (web search), YouTube (video
sharing), Facebook (social networking), Twitter (microblogging), Groupon (social com-
merce), Foursquare (mobile check-in), Salesforce (business software offered as online ser-
vices “in the cloud”), Craigslist (mostly free classified listings), Flickr (photo sharing),
Skype (Internet telephony and video calling and conferencing) and Wikipedia (a free
online encyclopedia).

Web 2.0 involves the users—not only do they create content, but they help organize
it, share it, remix it, critique it, update it, etc. Web 2.0 is a conversation, with everyone
having the opportunity to speak and share views. Companies that understand Web 2.0
realize that their products and services are conversations as well.

Architecture of Participation

Web 2.0 embraces an architecture of participation—a design that encourages user inter-
action and community contributions. You, the user, are the most important aspect of Web
2.0—so important, in fact, that in 2006, TIME magazine’s “Person of the Year” was
“You.” The article recognized the social phenomenon of Web 2.0—the shift away from
a powerful few to an empowered many. Popular blogs now compete with traditional media
powerhouses, and many Web 2.0 companies are built almost entirely on user-generated
content. For websites like Facebook®, Twitter™, YouTube, eBay® and Wikipedia® users
create the content, while the companies provide the plazforms on which to enter, manipu-
late and share the information.

1.14 Some Key Software Development Terminology

Figure 1.31 lists a number of buzzwords that you'll hear in the software development com-
munity. We've created Resource Centers on most of these topics, with more on the way.

3. T. O’Reilly, “What is Web 2.0: Design Patterns and Business Models for the Next Generation
of Software.” September 2005 <http://waw.oreillynet.com/pub/a/oreilly/tim/news/2005/
09/30/what-is-web-20.html1?page=1>.

4. L. Grossman, “TIME’s Person of the Year: You.” T7IME, December 2006 <http://
www.time.com/time/magazine/article/0,9171,1569514,00.htm1>.

http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html?page=1
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html?page=1
http://www.time.com/time/magazine/article/0,9171,1569514,00.html
http://www.time.com/time/magazine/article/0,9171,1569514,00.html

32 Chapter | Introduction to Computers, the Internet and the Web

Technology Description

Ajax Ajax is one of the premier Web 2.0 software technologies. Ajax helps Inter-
net-based applications perform like desktop applications—a difficult task,
given that such applications suffer transmission delays as data is shuttled
back and forth between your computer and servers on the Internet.

Agile software Agile software development is a set of methodologies that try to get soft-

development ware implemented faster and using fewer resources than previous methodol-
ogies. Check out the Agile Alliance (www.agilealliance.org) and the Agile
Manifesto (www.agilemanifesto.org).

Refactoring Refactoring involves reworking programs to make them clearer and easier
to maintain while preserving their correctness and functionality. It's widely
employed with agile development methodologies. Many IDEs include refac-
toring tools to do major portions of the reworking automatically.

Design Design patterns are proven architectures for constructing flexible and main-

patterns tainable object-oriented software. The field of design patterns tries to enu-
merate those recurring patterns, encouraging software designers to reuse
them to develop better-quality software using less time, money and effort.

LAMP MySQL is an open-source database management system. PHP is the most
popular open-source server-side Internet “scripting” language for develop-
ing Internet-based applications. LAMP is an acronym for the set of open-
source technologies that many developers use to build web applications—it
stands for Linux, Apache, MySQL and PHP (or Perl or Python—two other
languages used for similar purposes).

Software as a Software has generally been viewed as a product; most software still is

Service (SaaS) offered this way. If you want to run an application, you buy a software pack-
age from a software vendor—often a CD, DVD or web download. You then
install that software on your computer and run it as needed. As new versions
of the software appear, you upgrade your software, often requiring signifi-
cant time and at considerable expense. This process can become cumber-
some for organizations with tens of thousands of systems that must be
maintained on a diverse array of computer equipment. With Software as a
Service (SaaS), the software runs on servers elsewhere on the Internet.
When that server is updated, all clients worldwide see the new capabili-
ties—no local installation is needed. You access the service through a
browser. Browsers are quite portable, so you can run the same applications
on a wide variety of computers from anywhere in the world. Salesforce.com,
Google, and Microsoft’s Office Live and Windows Live all offer SaaS. SaaS
is a capability of cloud computing.

Platform as a Platform as a Service (PaaS), another capability of cloud computing, provides

Service (PaaS) a computing platform for developing and running applications as a service
over the web, rather than installing the tools on your computer. Paa$S provid-
ers include Google App Engine, Amazon EC2, Bungee Labs and more.

Software Software Development Kits (SDKs) include the tools and documentation
Development developers use to program applications.
Kit (SDK)

Fig. 1.31 | Software technologies.

www.agilealliance.org
www.agilemanifesto.org

I.15 Keeping Up-to-Date with Information Technologies 33

Figure 1.32 describes software product-release categories.

Version Description

Alpha An alpha version is the earliest release of a software product that’s still under
active development. Alpha versions are often buggy, incomplete and unstable
and are released to a relatively small number of developers for testing new fea-
tures, getting early feedback, etc.

Beta Bera versions are released to a larger number of developers later in the devel-
opment process after most major bugs have been fixed and new features are
nearly complete. Beta software is more stable, but still subject to change.

Release Release candidates are generally feature complete and (supposedly) bug free and

candidates ready for use by the community, which provides a diverse testing environ-
ment—the software is used on different systems, with varying constraints and
for a variety of purposes. Any bugs that appear are corrected, and eventually
the final product is released to the general public. Software companies often
distribute incremental updates over the Internet.

Continuous Software that’s developed using this approach generally does not have version

beta numbers (for example, Google search or Gmail). The software, which is
hosted in the cloud (not installed on your computer), is constantly evolving
so that users always have the latest version.

Fig. 1.32 | Software product-release terminology.

1.15 Keeping Up-to-Date with Information Technologies

Figure 1.33 lists key technical and business publications that will help you stay up-to-date
with the latest news and trends and technology. You can also find a growing list of
Internet- and web-related Resource Centers at www.deitel.com/resourcecenters.html.

Publication URL

ACM TechNews technews.acm.org/
ACM Transactions on www.gccis.rit.edu/taccess/index.html
Accessible Computing

ACM Transactions on Internet toit.acm.org/
Technology

Bloomberg BusinessWeek www. businessweek. com
CNET news.cnet.com
Communications of the ACM cacm.acm.org/
Computer World www . computerworld.com
Engadget www . engadget . com
eWeek www .. eweek . com

Fig. 1.33 | Technical and business publications. (Part | of 2.)

www.deitel.com/resourcecenters.html
www.gccis.rit.edu/taccess/index.html
www.businessweek.com
www.computerworld.com
www.engadget.com
www.eweek.com

34 Chapter I Introduction to Computers, the Internet and the Web

Publication URL

Fast Company www . fastcompany . com/

Fortune money.cnn.com/magazines/fortune/
IEEE Computer www . computer.org/portal/web/computer
IEEE Internet Computing www . computer.org/portal/web/internet/home
InfoWorld www . infoworld. com

Mashable mashable.com

PCWorld www . pcworld. com

SD Times www . sdtimes.com

Slashdot slashdot.org/

Smarter Technology www . smartertechnology . com

Technology Review technologyreview.com

Techcrunch techcrunch.com

Wired www.wired.com

Fig. 1.33 | Technical and business publications. (Part 2 of 2.)

1.16 Web Resources

This section provides links to our C and related Resource Centers that will be useful to
you as you learn C. These Resource Centers include various C resources, including blogs,
articles, whitepapers, compilers, development tools, downloads, FAQs, tutorials, webcasts,
wikis and links to resources for C game programming with the Allegro libraries. For up-
dates on Deitel publications, Resource Centers, training courses, partner offers and more,
follow us on Facebook® at www. facebook . com/deitelfan/ and on Twitter® @deitel.

Deitel & Associates Websites

www.deitel.com/books/chtp7/
The Deitel & Associates C How ro Program, 7/e site. Here you'll find links to the book’s examples
and other resources.

www.deitel.com/C/

www.deitel.com/visualcplusplus/

www.deitel.com/codesearchengines/

www.deitel.com/programmingprojects/

Check these Resource Centers for compilers, code downloads, tutorials, documentation, books, e-
books, articles, blogs, RSS feeds and more that will help you develop C applications.

www.deitel.com
Check this site for updates, corrections and additional resources for all Deitel publications.

www.deitel.com/newsletter/subscribe.html
Subscribe here for the Deitel® Buzz Online e-mail newsletter to follow the Deitel & Associates pub-
lishing program, including updates and errata to C How to Program, /e.

www.facebook.com/deitelfan/
www.deitel.com/books/chtp7/
www.deitel.com
www.deitel.com/newsletter/subscribe.html
www.fastcompany.com/
www.computer.org/portal/web/computer
www.computer.org/portal/web/internet/home
www.infoworld.com
www.pcworld.com
www.sdtimes.com
www.smartertechnology.com
www.wired.com
www.deitel.com/C/
www.deitel.com/visualcplusplus/
www.deitel.com/codesearchengines/
www.deitel.com/programmingprojects/

Terminology

actions (computers perform) 2

agile software development 32

Ajax 32

American National Standards Institute
(ANSI) 12

Android 29

architecture of participation 31

arithmetic and logic unit (ALU) 7

ASCIIY

assembler 10

assembly language 10

bit 8

bytes 8

C preprocessor 16

C Standard Library 12

central processing unit (CPU) 7

character 8

character set 8

class 15

cloud computing 4

compile 16

compile error 17

compile phase 16

compile-time error 17

compiler 10

components (software) 13

computer program 5

data hierarchy 7

database 9

decisions (made by computers) 2

design pattern 32

edit phase 16

editor program 16

embedded systems 11

encapsulate 15

executable image 18

execute 18

execute phase 16

field 9

file 9

function 12

gcc compilation command 18

hardware 2

hardware platform 11

high-level language 10

information hiding 16

inheritance 16

input device 6

input unit 6

instance 15

Terminology

instance variable 15

International Standards Organization (ISO) 12

interpreter 10

iOS 29

kernel 28

LAMP 32

link phase 16

linker 18

linking 18

Linux 28

load phase 16

loader 18

loading 18

logical unit 6

machine language 10

memory 7

memory unit 7

method 14

method call 15

Moore’s Law 6

multi-core processor 7

object 13

object code 16

object-oriented programming (OOP) 13
open source 28

operating system 27

output device 6

output unit 6

Platform as a Service (PaaS) 32
portable program 10

preprocess phase 16
preprocessor 16

preprocessor directive 16
primary memory 7

programmer 5

record 9

refactoring 32

scripting language 10

secondary storage unit 7
software 2

Software as a Service (SaaS) 32
Software Development Kit (SDK) 32
standard error stream (stderr) 19
standard input stream (stdin) 18
standard output stream (stdout) 18
syntax error 16

Unicode 8

Web 2.0 31

Windows Operating System 28

36 Chapter | Introduction to Computers, the Internet and the Web

Self-Review Exercises
1.1 Fill in the blanks in each of the following:

a) Computers process data under the control of sequences of instructions called computer

b) is a type of computer language that uses Englishlike abbreviations for ma-
chine-language instructions.

o languages are most convenient to the programmer for writing programs
quickly and easily.

d) The only language a computer can directly understand is that computer’s

e) The programs that translate high-level language programs into machine language are
called

f) With development, individuals and companies contribute their efforts in de-
veloping, maintaining and evolving software in exchange for the right to use that soft-
ware for their own purposes, typically at no charge.

g) Cis widely known as the development language of the operating system.

1.2 Fill in the blanks in each of the following sentences about the C environment.

a) C programs are normally typed into a computer using a(n) program.

b) In a C system, a(n) program automatically executes before the translation
phase begins.

¢) The two most common kinds of preprocessor directives are and

d) The program combines the output of the compiler with various library func—
tions to produce an executable image.

e) The program transfers the executable image from disk to memory.

1.3 Fill in the blanks in each of the following statements (based on Section 1.9):

a) Objects have the property of —although objects may know how to commu-
nicate with one another across well-defined interfaces, they normally are not allowed to
know how other objects are implemented.

b) In object-oriented programming languages, we create to house the set of
methods that perform tasks.

) With , new classes of objects are derived by absorbing characteristics of existing
classes, then adding unique characteristics of their own.

d) Thesize, shape, color and weight of an object are considered of the object’s class.

Answers to Self-Review Exercises

1.1 a) programs. b) Assembly language. ¢) High-level. d) machine language. e) compilers.
f) open-source. g) UNIX.

1.2 a) editor. b) preprocessor. ¢) including other files in the file to be compiled, performing var-
ious text replacements. d) linker. e) loader.

1.3 a) information hiding. b) classes. ¢) inheritance. d) attributes.

Exercises

1.4 Categorize each of the following items as either hardware or software:

a)
b)
o)
d)
e)
f)

CPU

C++ compiler
ALU

C++ preprocessor
input unit

an editor program

Making a Difference 37

1.5 Fill in the blanks in each of the following statements:
a) The process of instructing the computer to solve a problem is called
b) What type of computer language uses Englishlike abbreviations for machine-language
instructions? .
¢) Thelevel of computer language at which it’s most convenient to write programs quickly
and easily is .
d) The only language that a computer directly understands is called that computer's

e) Web 2.0 embraces a(n) —a design that encourages user interaction and com-
munity contributions.

1.6 Fill in the blanks in each of the following statements:
a) is now used to develop large-scale enterprise applications, to enhance the
functionality of web servers, to provide applications for consumer devices and for many
other purposes.

b) initially became widely known as the development language of the UNIX op-
erating system.
c) The programming language was developed by Bjarne Stroustrup in the early
1980s at Bell Laboratories.
1.7 Discuss the meaning of each of the following names:
a) stdin
b) stdout
c) stderr
1.8 Why is so much attention today focused on object-oriented programming?
1.9 (Internet in Industry and Research) Figure 1.1 provides examples of how computers and

the Internet are being used in industry and research. Find three additional examples and describe
how each is using the Internet and the web.

1.10 (Cloud Computing) Describe three benefits of the cloud computing model.

1.1l (Internet Negatives) Besides their numerous benefits, the Internet and the web have several
downsides, such as privacy issues, identity theft, spam and malware. Research some of the negative as-
pects of the Internet. List five problems and describe what could possibly be done to help solve each.

1.12 (Watch as an Object) You are probably wearing on your wrist one of the most common
types of objects—a watch. Discuss how each of the following terms and concepts applies to the no-
tion of a watch: object, attributes, behaviors, class, inheritance (consider, for example, an alarm
clock), messages, encapsulation and information hiding.

Making a Difference

.13 (Test-Drive: Carbon Footprint Calculator) Some scientists believe that carbon emissions,
especially from the burning of fossil fuels, contribute significantly to global warming and that this
can be combatted if individuals take steps to limit their use of carbon-based fuels. Organizations and
individuals are increasingly concerned about their “carbon footprints.” Websites such as TerraPass

www. terrapass.com/carbon-footprint-calculator/
and Carbon Footprint
www.carbonfootprint.com/calculator.aspx

provide carbon footprint calculators. Test-drive these calculators to estimate your carbon footprint.
Exercises in later chapters will ask you to program your own carbon footprint calculator. To pre-
pare for this, use the web to research the formulas for calculating carbon footprints.

www.terrapass.com/carbon-footprint-calculator/
www.carbonfootprint.com/calculator.aspx

38 Chapter | Introduction to Computers, the Internet and the Web

1.14 (Tést-Drive: Body Mass Index Calculator) By recent estimates, two-thirds of the people in
the United States are overweight and about half of those are obese. This causes significant increases
in illnesses such as diabetes and heart disease. To determine whether a person is overweight or obese,
you can use a measure called the body mass index (BMI). The United States Department of Health
and Human Services provides a BMI calculator at waw.nh1bisupport.com/bmi/. Use it to calculate
your own BMI. An exercise in Chapter 2 will ask you to program your own BMI calculator. To pre-
pare for this, use the web to research the formulas for calculating BMI.

1.15 (Gender Neutrality) Many people want to eliminate sexism in all forms of communication.
You’ve been asked to create a program that can process a paragraph of text and replace gender-spe-
cific words with gender-neutral ones. Assuming that you've been given a list of gender-specific
words and their gender-neutral replacements (e.g., replace “wife” with “spouse,” “man” with “per-
son,” “daughter” with “child” and so on), explain the procedure you’d use to read through a para-
graph of text and manually perform these replacements. How might your procedure generate a
strange term like “woperchild?” In Chapter 4, you’ll learn that a more formal term for “procedure”
is “algorithm,” and that an algorithm specifies the steps to be performed and the order in which to
perform them.

1.16 (Privacy) Some online e-mail services save all e-mail correspondence for some period of
time. Suppose a disgruntled employee were to post all of the e-mail correspondences for millions of
people, including yours, on the Internet. Discuss the issues.

1.17 (Programmer Responsibility and Liability) As a programmer in industry, you may develop
software that could affect people’s health or even their lives. Suppose a software bug in one of your
programs causes a cancer patient to receive an excessive dose during radiation therapy and that the
person is severely injured or dies. Discuss the issues.

1.18 (2010 “Flash Crash”) An example of the consequences of our excessive dependence on
computers was the so-called “flash crash” which occurred on May 6, 2010, when the U.S. stock mar-
ket fell precipitously in a matter of minutes, wiping out trillions of dollars of investments, and then
recovered within minutes. Research online the causes of this crash and discuss the issues it raises.

1.19 (Making a Difference Projects) The following is a list of just a few worldwide organizations
that are working to make a difference. Visit these sites and our Making a Difference Resource Center
at www.deitel.com/makingadifference. Prepare a top-10 list of programming projects that you
think could indeed “make a difference.”

* www.imaginecup.com/

The Microsoft Image Cup is a global competition in which students use technology to try to solve
some of the world’s most difficult problems, such as environmental sustainability, ending hun-
ger, emergency response, literacy and combating HIV/AIDS. Visit www. imaginecup. com/about
for more information about the competition and to learn about the projects developed by previ-
ous winners. You can also find several project ideas submitted by worldwide charitable organiza-
tions at www.imaginecup.com/students/imagine-cup-solve-this. For additional ideas for
programming projects that can make a difference, search the web for “making a difference” and
visit the following websites:

®* www.un.org/millenniumgoals
The United Nations Millennium Project seeks solutions to major worldwide issues such as envi-
ronmental sustainability, gender equality, child and maternal health, universal education and
more.

®* www.ibm.com/smarterplanet/
The IBM® Smarter Planet website discusses how IBM is using technology to solve issues related
to business, cloud computing, education, sustainability and more.

www.nhlbisupport.com/bmi/
www.deitel.com/makingadifference
www.imaginecup.com/
www.imaginecup.com/about
www.imaginecup.com/students/imagine-cup-solve-this
www.un.org/millenniumgoals
www.ibm.com/smarterplanet/

Making a Difference 39

www . gatesfoundation.org/Pages/home.aspx

The Bill and Melinda Gates Foundation provides grants to organizations that work to alleviate
hunger, poverty and disease in developing countries. In the United States, the foundation focuses
on improving public education, particularly for people with few resources.

www.nethope.org/
NetHope is a collaboration of humanitarian organizations worldwide working to solve technol-
ogy problems such as connectivity, emergency response and more.

www. rainforestfoundation.org/home
The Rainforest Foundation works to preserve rainforests and to protect the rights of the indige-
nous people who call the rainforests home. The site includes a list of things you can do to help.

www.undp.org/
The United Nations Development Programme (UNDP) seeks solutions to global challenges
such as crisis prevention and recovery, energy and the environment and democratic governance.

www.unido.org

The United Nations Industrial Development Organization (UNIDO) seeks to reduce poverty,
give developing countries the opportunity to participate in global trade, and promote energy ef-
ficiency and sustainability.

www.usaid.gov/
USAID promotes global democracy, health, economic growth, conflict prevention, humanitari-
an aid and more.

www . toyota.com/ideas-for-good/

Toyota’s Ideas for Good website describes several Toyota technologies that are making a differ-
ence—including their Advanced Parking Guidance System, Hybrid Synergy Drive®, Solar Pow-
ered Ventilation System, T.H.U.M.S. (Total Human Model for Safety) and Touch Tracer
Display. You can participate in the Ideas for Good challenge by submitting a short essay or video
describing how these technologies can be used for other good purposes.

www.gatesfoundation.org/Pages/home.aspx
www.nethope.org/
www.rainforestfoundation.org/home
www.undp.org/
www.unido.org
www.usaid.gov/
www.toyota.com/ideas-for-good/

Introduction to C
Programming

What’s in a name?

That which we call a rose
By any other name would
smell as sweet.

—Wiilliam Shakespeare

“Take some more tea,” the
March Hare said ro Alice, very
earnestly. “I've had nothing yet,”
Alice replied in an offended
tone: “so I can’t take more.” “You
mean you can't take less,” said
the Hatter: “it’s very easy to take
more than nothing.”

—Lewis Carroll

High thoughts must have high
language.

—Aristophanes

Objectives

In this chapter, you'll:

= Write simple computer
programs in C.

Use simple input and output
statements.

Use the fundamental data
types.

Learn computer memory
concepts.

Use arithmetic operators.

Learn the precedence of
arithmetic operators.

= Write simple decision-
making statements.

2.1 Introduction 41

2.1 Introduction 2.4 Memory Concepts
2.2 A Simple C Program: Printing a Line 2.5 Arithmetic in C

of Text 2.6 Decision Making: Equality and
2.3 Another Simple C Program: Adding Relational Operators

Two Integers 2.7 Secure C Programming

Summary | Terminology | Self-Review Exercises | Answers to Self-Review Exercises | Exercises
Making a Difference

2.1 Introduction

The C language facilitates a structured and disciplined approach to computer-program
design. In this chapter we introduce C programming and present several examples that
illustrate many important features of C. Each example is analyzed one statement at a time.
In Chapters 3 and 4 we present an introduction to structured programming in C. We then
use the structured approach throughout the remainder of the C portion of the text.

2.2 A Simple C Program: Printing a Line of Text

C uses some notations that may appear strange to people who have not programmed com-
puters. We begin by considering a simple C program. Our first example prints a line of
text. The program and its screen output are shown in Fig. 2.1.

// Fig. 2.1: fig02_01l.c
// A first program in C.
#include <stdio.h>

// function main begins program execution
int main(void)
{
printf();
} // end function main

ooOo~NGOTUNDR WN -

Welcome to C!

Fig. 2.1 | A first program in C.

Comments
Even though this program is simple, it illustrates several important features of the C lan-
guage. Lines 1 and 2

// Fig. 2.1: fig02_01.c
// A first program in C

begin with //, indicating that these two lines are comments. You insert comments to doc-
ument programs and improve program readability. Comments do 7oz cause the computer
to perform any action when the program is run. Comments are ignored by the C compiler
and do 7ot cause any machine-language object code to be generated. The preceding com-

42 Chapter 2 Introduction to C Programming

ment simply describes the figure number, file name and purpose of the program. Com-
ments also help other people read and understand your program.

You can also use /#...%/ multi-line comments in which everything from /* on the
first line to */ at the end of the last line is a comment. We prefer // comments because
they’re shorter and they eliminate common programming errors that occur with /*...%/
comments, especially when the closing */ is omitted.

#include Preprocessor Directive
Line 3

#include <stdio.h>

is a directive to the C preprocessor. Lines beginning with # are processed by the prepro-
cessor before compilation. Line 3 tells the preprocessor to include the contents of the stan-
dard input/output header (<stdio.h>) in the program. This header contains information
used by the compiler when compiling calls to standard input/output library functions such
as printf (line 8). We explain the contents of headers in more detail in Chaprter 5.

Blank Lines and White Space

Line 4 is simply a blank line. You use blank lines, space characters and tab characters (i.e.,
“tabs”) to make programs easier to read. Together, these characters are known as white
space. White-space characters are normally ignored by the compiler.

The main Function
Line 6

int main(void)

is a part of every C program. The parentheses after main indicate that main is a program
building block called a function. C programs contain one or more functions, one of which
must be main. Every program in C begins executing at the function main. Functions can
return information. The keyword int to the left of main indicates that main “returns” an
integer (whole-number) value. We'll explain what it means for a function to “return a val-
ue” when we demonstrate how to create your own functions in Chapter 5. For now, sim-
ply include the keyword int to the left of main in each of your programs. Functions also
can receive information when they’re called upon to execute. The void in parentheses here
means that main does ot receive any information. In Chapter 14, we'll show an example
of main receiving information.

a7 Good Programming Practice 2.1
{%I Every function should be preceded by a comment describing the purpose of the function.

A left brace, {, begins the body of every function (line 7). A corresponding right brace
ends each function (line 9). This pair of braces and the portion of the program between
the braces is called a block. The block is an important program unit in C.

An Output Statement
Line 8

printf();

2.2 A Simple C Program: Printing a Line of Text 43

instructs the computer to perform an action, namely to print on the screen the string of
characters marked by the quotation marks. A string is sometimes called a character string,
a message or a literal. The entire line, including the printf function (the “f” stands for
“formatted”), its argument within the parentheses and the semicolon (5), is called a state-
ment. Every statement must end with a semicolon (also known as the statement termina-
tor). When the preceding printf statement is executed, it prints the message Welcome to
C! on the screen. The characters normally print exactly as they appear between the double
quotes in the printf statement.

Escape Sequences

Notice that the characters \n were not printed on the screen. The backslash (\) is called an
escape character. Itindicates that printf is supposed to do something out of the ordinary.
When encountering a backslash in a string, the compiler looks ahead at the next character
and combines it with the backslash to form an escape sequence. The escape sequence \n
means newline. When a newline appears in the string output by a printf, the newline
causes the cursor to position to the beginning of the next line on the screen. Some com-
mon escape sequences are listed in Fig. 2.2.

Escape sequence Description
\n Newline. Position the cursor at the beginning of the next line.
\t Horizontal tab. Move the cursor to the next tab stop.
\a Alert. Produces a sound or visible alert without changing the current
cursor position.
A\ Backslash. Insert a backslash character in a string.
\" Double quote. Insert a double-quote character in a string.
Fig. 2.2 | Some common escape sequences .

Because the backslash has special meaning in a string, i.e., the compiler recognizes it
as an escape character, we use a double backslash (\\) to place a single backslash in a string.
Printing a double quote also presents a problem because double quotes mark the bound-
aries of a string—such quotes are not printed. By using the escape sequence \" in a string
to be output by printf, we indicate that printf should display a double quote. The right
brace, }, (line 9) indicates that the end of main has been reached.

a7, Good Programming Practice 2.2
é% Add a comment to the line containing the right brace, }, that closes every function, in-
cluding main.

We said that printf causes the computer to perform an action. As any program
executes, it performs a variety of actions and makes decisions. Section 2.6 discusses deci-
sion making. Chapter 3 discusses this action/decision model of programming in depth.

The Linker and Executables
Standard library functions like printf and scanf are noz part of the C programming lan-
guage. For example, the compiler cannor find a spelling error in printf or scanf. When

44 Chapter 2 Introduction to C Programming

the compiler compiles a printf statement, it merely provides space in the object program
for a “call” to the library function. But the compiler does 70t know where the library func-
tions are—the /inker does. When the linker runs, it locates the library functions and inserts
the proper calls to these library functions in the object program. Now the object program
is complete and ready to be executed. For this reason, the linked program is called an ex-
ecutable. If the function name is misspelled, the /inker will spot the error, because it will
not be able to match the name in the C program with the name of any known function in
the libraries.

= Common Programming Error 2.1
T Mistyping the name of the output function printf as print in a program.

J

W) Good Programming Practice 2.3
(f%' Indent the entire body of each function one level of indentation (we recommend three
spaces) within the braces that define the body of the function. This indentation emphasizes
the functional structure of programs and helps make programs easier to read.

" Set a convention for the size of indent you prefer and then uniformly apply that conven-
tion. The tab key may be used to create indents, but tab stops may vary.

g E Good Programming Practice 2.4

Using Multiple print fs

The printf function can print Welcome to C! several different ways. For example, the pro-
gram of Fig. 2.3 produces the same output as the program of Fig. 2.1. This works because
each printf resumes printing where the previous printf stopped printing. The first
printf (line 8) prints Welcome followed by a space, and the second printf (line 9) begins
printing on the same line immediately following the space.

// Fig. 2.3: fig02_03.c

1

2 // Printing on one Tine with two printf statements.
3 #include <stdio.h>

4

5 // function main begins program execution

6 int main(void)

7 {

8 printf();

9 printf();

o

} // end function main

WeTcome to C!

Fig. 2.3 | Printing on one line with two printf statements.

One printf can print several lines by using additional newline characters as in
Fig. 2.4. Each time the \n (newline) escape sequence is encountered, output continues at
the beginning of the next line.

2.3 Another Simple C Program: Adding Two Integers 45

1 // Fig. 2.4: fig02_04.c

2 // Printing multiple lines with a single printf.
3 #include <stdio.h>

4

5 // function main begins program execution
6 1int main(void)

7 {

8 printf();

9 1} // end function main

Welcome

to

C!

Fig. 2.4 | Printing multiple lines with a single printf.

2.3 Another Simple C Program: Adding Two Integers

Our next program uses the Standard Library function scanf to obtain two integers typed
by a user at the keyboard, computes the sum of these values and prints the result using
printf. The program and sample output are shown in Fig. 2.5. [In the input/output dia-
log of Fig. 2.5, we emphasize the numbers entered by the user in bold.]

1 // Fig. 2.5: fig02_05.c

2 // Addition program.

3 #include <stdio.h>

4

5 // function main begins program execution

6 int main(void)

7 {

8 int integerl; // first number to be entered by user
9 int integer2; // second number to be entered by user
10 int sum; // variable in which sum will be stored

11

12 printf(); // prompt

13 scanf(, &integerl); // read an integer

14

15 printf(); // prompt

16 scanf(, &integer2); // read an integer

17

18 sum = integerl + integer2; // assign total to sum
19
20 printf(, sum); // print sum

21 } // end function main

Enter first integer

45

Enter second integer
72

Sum is 117

Fig. 2.5 | Addition program.

46 Chapter 2 Introduction to C Programming

The comment in lines 1-2 states the purpose of the program. As we stated earlier,
every program begins execution with main. The left brace { (line 7) marks the beginning
of the body of main, and the corresponding right brace } (line 21) marks the end of main.

Variables and Variable Definitions
Lines 8-10

int integerl; // first number to be entered by user
int integer2; // second number to be entered by user
int sum; // variable in which sum will be stored

are definitions. The names integerl, integer2 and sum are the names of variables—Ilo-
cations in memory where values can be stored for use by a program. These definitions
specify that variables integerl, integer2 and sum are of type int, which means that
they’ll hold integer values, i.e., whole numbers such as 7, -11, 0, 31914 and the like.

All variables must be defined with a name and a data type before they can be used in a
program. For readers using the Microsoft Visual C++ compiler, note that we're placing our
variable definitions immediately after the left brace that begins the body of main. The C stan-
dard allows you to place each variable definition anywhbere in main before that variable’s first
use in the code. Some compilers, such as GNU gcc, have implemented this capability. We'll
address this issue in more depth in later chapters.

The preceding definitions could have been combined into a single definition state-
ment as follows:

int integerl, integer2, sum;

but that would have made it difficult to describe the variables with corresponding com-
ments as we did in lines 8-10.

Identifiers and Case Sensitivity

A variable name in C is any valid identifier. An identifier is a series of characters consisting
of letters, digits and underscores (_) that does 7oz begin with a digit. C is case sensitive—
uppercase and lowercase letters are different in C, so al and Al are different identifiers.

Using a capital letter where a lowercase letter should be used (for example, typing Main
instead of main).

; a ? Common Programming Error 2.2
Error-Prevention Tip 2.1

Avoid starting identifiers with the underscore character (_) to prevent conflicts with com-
piler-generated identifiers and standard library identifiers.

Choosing meaningful variable names helps make a program self-documenting—ithat is,
fewer comments are needed.

% E Good Programming Practice 2.5
(’

The first letter of an identifier used as a simple variable name should be a lowercase letter.
Later in the text we'll assign special significance to identifiers that begin with a capital
letter and to identifiers that use all capital letters.

% E Good Programming Practice 2.6
(’

2.3 Another Simple C Program: Adding Two Integers 47

Multiple-word variable names can help make a program more readable. Separate the words
with underscores as in total_commissions, or, if you run the words together, begin each
word after the first with a capital letter as in totalCommissions. The latter style is preferred.

% E Good Programming Practice 2.7

Syntax Errors

We discussed what syntax errors are in Chapter 1. Recall that the Microsoft Visual C++
compiler requires variable definitions to be placed affer the left brace of a function and be-
fore any executable statements. Therefore, in the program in Fig. 2.5, inserting the defini-
tion of integerl affer the first printf would cause a syntax error in Visual C++.

— Common Programming Error 2.3
gg\ Placing variable definitions among executable statements causes syntax errors in the Mi-
U crosoft Visual C++ Compiler.
Prompting Messages
Line 12

printf(); // prompt

displays the literal "Enter first integer" and positions the cursor to the beginning of the
next line. This message is called a prompt because it tells the user to take a specific action.

The scanf Function and Formatted Inputs
The next statement

scanf(, &integerl); // read an integer

uses scanf (the “f” stands for “formatted”) to obtain a value from the user. The function
reads from the standard inpuz, which is usually the keyboard. This scanf has two arguments,
"%d" and &integerl. The first, the format control string, indicates the #ype of data that
should be entered by the user. The %d conversion specifier indicates that the data should be
an integer (the letter d stands for “decimal integer”). The % in this context is treated by scanf
(and printf as we'll see) as a special character that begins a conversion specifier. The second
argument of scanf begins with an ampersand (&)—called the address operator—followed
by the variable name. The &, when combined with the variable name, tells scanf the location
(or address) in memory at which the variable integer1 is stored. The computer then stores
the value that the user enters for integerl at that location. The use of ampersand (&) is often
confusing to novice programmers or to people who have programmed in other languages
that do not require this notation. For now, just remember to precede each variable in every
call to scanf with an ampersand. Some exceptions to this rule are discussed in Chapters 6
and 7. The use of the ampersand will become clear after we study poznzers in Chapter 7.

e/ Good Programming Practice 2.8
3

Place a space after each comma (,) to make programs more readable.

When the computer executes the preceding scanf, it waits for the user to enter a value
for variable integerl. The user responds by typing an integer, then pressing the Enzer key
to send the number to the computer. The computer then assigns this number, or value, to

48 Chapter 2 Introduction to C Programming

the variable integerl. Any subsequent references to integerl in this program will use this

same value. Functions printf and scanf facilitate interaction between the user and the com-

puter. Because this interaction resembles a dialogue, it’s often called interactive computing,
Line 15

printf(); // prompt

displays the message Enter second integer on the screen, then positions the cursor to the
beginning of the next line. This printf also prompts the user to take action.
Line 16

scanf(, &integer2); // read an integer

obtains a value for variable integer2 from the user.

Assignment Statement
The assignment statement in line 18

sum = integerl + integer2; // assign total to sum

calculates the total of variables integerl and integer2 and assigns the result to variable
sum using the assignment operator =. The statement is read as, “sum gezs the value of
integerl + integer2.” Most calculations are performed in assignments. The = operator
and the + operator are called binary operators because each has rwo operands. The + oper-
ator’s two operands are integerl and integer2. The = operator’s two operands are sum
and the value of the expression integerl + integer2.

C Place spaces on either side of a binary operator. This makes the operator stand out and
makes the program more readable.

';E E Good Programming Practice 2.9

N

. Common Programming Error 2.4
g% A calculation in an assignment statement must be on the right side of the = operator. It’s
\ a compilation error to place a calculation on the left side of an assignment operator.
Printing with a Format Control String
Line 20

printf(, sum); // print sum

calls function printf to print the literal Sum is followed by the numerical value of variable
sum on the screen. This printf has two arguments, "Sum is %d\n" and sum. The first ar-
gument is the format control string. It contains some literal characters to be displayed, and
it contains the conversion specifier %d indicating that an integer will be printed. The sec-
ond argument specifies the value to be printed. Notice that the conversion specifier for an
integer is the same in both printf and scanf—:this is the case for most C data types.

Calculations in printf Statements
Calculations can also be performed inside printf statements. We could have combined
the previous two statements into the statement

printf(, integerl + integer2);

The right brace, }, at line 21 indicates that the end of function main has been reached.

2.4 Memory Concepts 49

Common Programming Error 2.5

Forgetting to precede a variable in a scanf statement with an ampersand when that vari-
able should, in fact, be preceded by an ampersand results in an execution-time error. On
many systems, this causes a “segmentation fault” or “access violation.” Such an error occurs
when a user’s program attempts to access a part of the computer’s memory to which it does
not have access privileges. The precise cause of this error will be explained in Chapter 7.

Preceding a variable included in a printf statement with an ampersand when, in fact,
that variable should not be preceded by an ampersand.

: a ?_5 Common Programming Error 2.6

2.4 Memory Concepts

Variable names such as integerl, integer2 and sum actually correspond to locations in
the computer’s memory. Every variable has a name, a type and a value.
In the addition program of Fig. 2.5, when the statement (line 13)

scanf(, &integerl); // read an integer

is executed, the value entered by the user is placed into a memory location to which the
name integerl has been assigned. Suppose the user enters the number 45 as the value for
integerl. The computer will place 45 into location integerdl, as shown in Fig. 2.6.

integerl 45

Fig. 2.6 | Memory location showing the name and value of a variable.

Whenever a value is placed in a memory location, the value replaces the previous value
in that location; thus, this process is said to be destructive.
Returning to our addition program again, when the statement (line 16)

scanf(, &integer2); // read an integer

executes, suppose the user enters the value 72. This value is placed into location integer2,
and memory appears as in Fig. 2.7. These locations are not necessarily adjacent in memory.

Once the program has obtained values for integerl and integer2, it adds these
values and places the total into variable sum. The statement (line 18)

sum = integerl + integer2; // assign total to sum

integerl 45

integer2 72

Fig. 2.7 | Memory locations after both variables are input.

50 Chapter 2 Introduction to C Programming

that performs the addition also replaces whatever value was stored in sum. This occurs when
the calculated total of integerl and integer2 is placed into location sum (destroying the
value already in sum). After sum is calculated, memory appears as in Fig. 2.8. The values of
integerl and integer2 appear exactly as they did before they were used in the calculation.
They were used, but not destroyed, as the computer performed the calculation. Thus, when
a value is read from a memory location, the process is said to be nondestructive.

integerl 45
integer2 72
sum 117

Fig. 2.8 | Memory locations after a calculation.

2.5 Arithmeticin C

Most C programs perform calculations using the C arithmetic operators (Fig. 2.9). Note
the use of various special symbols not used in algebra. The asterisk (*) indicates multipli-
cation and the percent sign (%) denotes the remainder operator, which is introduced below.
In algebra, to multiply times 4, we simply place these single-letter variable names side by
side, as in 6. In C, however, if we were to do this, ab would be interpreted as a single,
two-letter name (or identifier). Therefore, C (and many other programming languages) re-
quire that multiplication be explicitly denoted by using the * operator, as in a * b. The
arithmetic operators are all binary operators. For example, the expression 3 + 7 contains
the binary operator + and the operands 3 and 7.

C operation Arithmetic operator Algebraic expression C expression
Addition + f+7 f+7
Subtraction = p-c p-c
Multiplication ~ * bm b *m
Division / x/yori or x+y x/y
Remainder % r mod s r%s

Fig. 2.9 | Arithmetic operators.

Integer Division and the Remainder Operator

Integer division yields an integer result. For example, the expression 7 / 4 evaluates to 1
and the expression 17 / 5 evaluates to 3. C provides the remainder operator, %, which
yields the remainder after integer division. The remainder operator is an integer operator
that can be used only with integer operands. The expression x % y yields the remainder af-
ter x is divided by y. Thus, 7 % 4 yields 3 and 17 % 5 yields 2. We'll discuss many interesting
applications of the remainder operator.

2.5 Arithmetic in C 51

'E An attempt to divide by zero is normally undefined on computer systems and generally re-

= sults in a fatal error, i.e., an error that causes the program to terminate immediately with-
out having successfully performed its job. Nonfatal errors allow programs to run to
completion, often producing incorrect results.

% ? Common Programming Error 2.7

Arithmetic Expressions in Straight-Line Form

Arithmetic expressions in C must be written in straight-line form to facilitate entering
programs into the computer. Thus, expressions such as “a divided by b” must be written
as a/b so that all operators and operands appear in a straight line. The algebraic notation

a

b

is generally not acceptable to compilers, although some special-purpose software packages
do support more natural notation for complex mathematical expressions.

Parentheses for Grouping Subexpressions
Parentheses are used in C expressions in the same manner as in algebraic expressions. For
example, to multiply a times the quantity b + ¢ we write a * (b + ¢).

Rules of Operator Precedence
C applies the operators in arithmetic expressions in a precise sequence determined by the
following rules of operator precedence, which are generally the same as those in algebra:

1. Operators in expressions contained within pairs of parentheses are evaluated first.
Parentheses are said to be at the “highest level of precedence.” In cases of nested,
or embedded, parentheses, such as

(Ca+b)+c)
the operators in the innermost pair of parentheses are applied first.

2. Multiplication, division and remainder operations are applied next. If an ex-
pression contains several multiplication, division and remainder operations, eval-
uation proceeds from left to right. Multiplication, division and remainder are said
to be on the same level of precedence.

3. Addition and subtraction operations are evaluated next. If an expression contains
several addition and subtraction operations, evaluation proceeds from left to right.
Addition and subtraction also have the same level of precedence, which is lower
than the precedence of the multiplication, division and remainder operations.

4. The assignment operator (=) is evaluated last.

The rules of operator precedence specify the order C uses to evaluate expressions.1

When we say evaluation proceeds from left to right, we’re referring to the associativity of
the operators. We'll see that some operators associate from right to left. Figure 2.10 sum-
marizes these rules of operator precedence for the operators we’ve seen so far.

1. We use simple examples to explain the order of evaluation of expressions. Subtle issues occur in more
complex expressions that you'll encounter later in the book. We'll discuss these issues as they arise.

52 Chapter 2 Introduction to C Programming

Operator(s) Operation(s) Order of evaluation (precedence)

() Parentheses Evaluated first. If the parentheses are nested,
the expression in the innermost pair is evalu-
ated first. If there are several pairs of parenthe-
ses “on the same level” (i.e., not nested),
they’re evaluated left to right.

* Multiplication Evaluated second. If there are several, they’re
/ Division evaluated left to right.

% Remainder

+ Addition Evaluated third. If there are several, they’re

- Subtraction evaluated left to right.

= Assignment Evaluated last.

Fig. 2.10 | Precedence of arithmetic operators.

Sample Algebraic and C Expressions

Now let’s consider several expressions in light of the rules of operator precedence. Each
example lists an algebraic expression and its C equivalent. The following expression calcu-
lates the arithmetic mean (average) of five terms.

a+b+c+d+e
5
C: m=(Ca+b+c+d+e)/5;

Algebra: m =

The parentheses are required to group the additions because division has higher prece-
dence than addition. The entire quantity (a+b + ¢ + d + e) should be divided by 5. If
the parentheses are erroneously omitted, we obtain a + b + ¢ + d + e / 5, which evaluates
incorrectly as

a+bicvd+ t
5

The following expression is the equation of a straight line:

Algebra: y=mx+ b

*

C: y=m?*X + b;

No parentheses are required. The multiplication is evaluated first because multiplication
has a higher precedence than addition.

The following expression contains remainder (%), multiplication, division, addition,
subtraction and assignment operations:

Algebra: z=pr%q + wix—y
c z = p *r%a+w/ x-y;
6 1 2 4 3 5

The circled numbers indicate the order in which C evaluates the operators. The multipli-
cation, remainder and division are evaluated first in left-to-right order (i.e., they associate

2.5 Arithmetic in C 53

from left to right) because they have higher precedence than addition and subtraction. The
addition and subtraction are evaluated next. They’re also evaluated left to right. Finally,
the result is assigned to the variable z.

Not all expressions with several pairs of parentheses contain nested parentheses. For
example, the following expression does #or contain nested parentheses—instead, the
parentheses are said to be “on the same level.”

a*(b+c)+c* (d+e)

Evaluation of a Second-Degree Polynomial
To develop a better understanding of the rules of operator precedence, let’s see how C eval-
uates a second-degree polynomial.

y = a * x * x 4+ b * x + c;

6 1 2 4 3 5

The circled numbers under the statement indicate the order in which C performs the oper-
ations. There’s no arithmetic operator for exponentiation in C, so we’ve represented x? as
x * x. The C Standard Library includes the pow (“power”) function to perform expo-
nentiation. Because of some subtle issues related to the data types required by pow, we defer
a detailed explanation of pow until Chapter 4.

Suppose variables a, b, ¢ and x in the preceding second-degree polynomial are initial-
ized as follows: a =2, b =3, c =7 and x = 5. Figure 2.11 illustrates the order in which the
operators are applied.

Step 1. y=2%5%5+3%5+7; (Leftmost multiplication)
2 *5ds 10
Step 2. y =10 * 5+ 3 * 5 + 7; (Leftmost multiplication)
10 = 5 is 50
Step 3. y=50+3%*5+7; (Multiplication before addition)
3 5 s 15
Step 4. y =50 + 15 + 7; (Leftmost addition)

50 + 15 is 65

Step 5. y = 65 + 7; (Last addition)
65 + 7 is 72

|

Step 6. y =72 (Last operation—place 72 in'y)

Fig. 2.11 | Order in which a second-degree polynomial is evaluated.

54 Chapter 2 Introduction to C Programming

As in algebra, it’s acceptable to place unnecessary parentheses in an expression to make
the expression clearer. These are called redundant parentheses. For example, the pre-
ceding statement could be parenthesized as follows:

y=Ca*x*x)+ (b*x)+c;

2.6 Decision Making: Equality and Relational Operators

Executable statements either perform actions (such as calculations or input or output of data)
or make decisions (we'll soon see several examples of these). We might make a decision in a
program, for example, to determine whether a person’s grade on an exam is greater than or
equal to 60 and whether the program should print the message “Congratulations! You
passed.” This section introduces a simple version of C’s 1 f statement that allows a program
to make a decision based on the truth or falsity of a statement of fact called a condition. If
the condition is true (i.e., the condition is met), the statement in the body of the if state-
ment is executed. If the condition is false (i.e., the condition isn’t met), the body statement
isn’t executed. Whether the body statement is executed or not, after the if statement com-
pletes, execution proceeds with the next statement after the i f statement.

Conditions in if statements are formed by using the equality operators and relational
operators summarized in Fig. 2.12. The relational operators all have the same level of prece-
dence and they associate left to right. The equality operators have a lower level of precedence
than the relational operators and they also associate left to right. [Voze: In C, a condition may
actually be any expression that generates a zero (false) or nonzero (true) value.]

o, Common Programming Error 2.8

A syntax error occurs if the two symbols in any of the operators ==, 1=, >= and <= are sep-
arated by spaces.

s, Common Programming Error 2.9

) Confusing the equality operator == with the assignment operator. To avoid this confusion,
the equality operator should be read “double equals” and the assignment operator should
be read “gets” or “Is assigned the value of.” As you'll see, confusing these operators may not
cause an easy-to-recognize compilation error, but may cause extremely subtle logic errors.

Algebraic equality or C equality or Example of

relational operator relational operator C condition Meaning of C condition
Equality operators

= == X ==y x is equal to y

1= x =y x is not equal to y

Relational operators

> > X >y x is greater than y

< < X <y x is less than y

> >= X >= x is greater than or equal to y
< <= X <=y x is less than or equal to y

Fig. 2.12 | Equality and relational operators.

2.6 Decision Making: Equality and Relational Operators 55

Figure 2.13 uses six 1f statements to compare two numbers entered by the user. If the
condition in any of these if statements is true, the printf statement associated with that
if executes. The program and three sample execution outputs are shown in the figure.

1 // Fig. 2.13: fig02_13.c

2 // Using if statements, relational

3 // operators, and equality operators.

4 #include <stdio.h>

5

6 // function main begins program execution

7 int main(void)

8 {

9 int numl; // first number to be read from user

10 int num2; // second number to be read from user

11

12 printf();
13 printf();

14

15 scanf(, &numl, &num2); // read two integers
16

17 if (. numl == num2) {

18 printf(, huml, num2);

19 } // end if
20
21 if (numl !'= num2) {
22 printf(, huml, num2);
23 } // end if
24
25 if (numl < num2) {
26 printf(, huml, num2);
27 } // end if
28
29 if (. numl > num2) {
30 printf(, huml, num2);
31 } // end if
32
33 if (numl <= num2) {
34 printf(, huml, num2);
35 } // end if
36
37 if (numl >= num2) {
38 printf(, huml, num2);
39 } // end if

40 } // end function main

Enter two integers, and I will tell you
the relationships they satisfy: 3 7

3 is not equal to 7

3 is less than 7

3 is less than or equal to 7

Fig. 2.13 | Using 1f statements, relational operators, and equality operators. (Part | of 2.)

56 Chapter 2 Introduction to C Programming

Enter two integers, and I will tell you
the relationships they satisfy: 22 12
22 is not equal to 12

22 is greater than 12

22 is greater than or equal to 12

Enter two integers, and I will tell you
the relationships they satisfy: 7 7

7 is equal to 7
7 is less than or equal to 7
7 is greater than or equal to 7

Fig. 2.13 | Using 1f statements, relational operators, and equality operators. (Part 2 of 2.)

The program uses scanf (line 15) to input two numbers. Each conversion specifier
has a corresponding argument in which a value will be stored. The first %d converts a value
to be stored in the variable numl, and the second %d converts a value to be stored in the
variable num2.

f Although it’s allowed, there should be no more than one statement per line in a program.

% E Good Programming Practice 2.10

— Common Programming Error 2.10
Q% Placing commas (when none are needed) between conversion specifiers in the format con-
U trol string of a scanf statement.
Comparing Numbers
The i f statement in lines 17-19

if (numl == num2) {
printf(, huml, num2);
}

compares the values of variables numl and num2 to test for equality. If the values are equal,
the statement in line 18 displays a line of text indicating that the numbers are equal. If the
conditions are true in one or more of the if statements starting in lines 21, 25, 29, 33
and 37, the corresponding body statement displays an appropriate line of text. Indenting
the body of each 1 f statement and placing blank lines above and below each i f statement
enhances program readability.

' Placing a semicolon immediately to the right of the right parenthesis after the condition
in an if statement.

: a? Common Programming Error 2.1 1
A left brace, {, begins the body of each if statement (e.g., line 17). A corresponding
right brace, }, ends each i f statement’s body (e.g., line 19). Any number of statements can
be placed in the body of an i f statement.?

2.6 Decision Making: Equality and Relational Operators 57

A lengthy statement may be spread over several lines. If a statement must be split across
lines, choose breaking points that make sense (such as after a comma in a comma-separated
list). If a statement is split across two or more lines, indent all subsequent lines. It’s not
correct to split identifiers.

&}\ Good Programming Practice 2.1 1

Figure 2.14 lists from highest to lowest the precedence of the operators introduced in
this chapter. Operators are shown top to bottom in decreasing order of precedence. The
equals sign is also an operator. All these operators, with the exception of the assignment
operator =, associate from left to right. The assignment operator (=) associates from right
to left.

Refer to the operator precedence chart when writing expressions containing many opera-
tors. Conffirm that the operators in the expression are applied in the proper order. If you're
uncertain about the order of evaluation in a complex expression, use parentheses to group
expressions or break the statement into several simpler statements. Be sure to observe that
some of C’s operators such as the assignment operator (=) associate from right to left rather

r-\g ?/\ Good Programming Practice 2.12

than from left to right.

Operators Associativity
O left to right

* / % left to right

+ - left to right

< <= > >= left to right
= I= left to right

= right to left

Fig. 2.14 | Precedence and associativity of the operators discussed so far.

Some of the words we've used in the C programs in this chapter—in particular int
and if—are keywords or reserved words of the language. Figure 2.15 contains the C key-
words. These words have special meaning to the C compiler, so you must be careful not
to use these as identifiers such as variable names.

In this chapter, we've introduced many important features of the C programming lan-
guage, including displaying data on the screen, inputting data from the user, performing
calculations and making decisions. In the next chapter, we build upon these techniques as
we introduce structured programming. You'll become more familiar with indentation
techniques. We'll study how to specify the order in which statements are executed—this is
called flow of control.

2. Using braces to delimit the body of an if statement is optional when the body contains only one
statement. Many programmers consider it good practice to always use these braces. In Chapter 3,
we'll explain the issues.

58 Chapter 2 Introduction to C Programming

auto double int struct
break else long switch
case enum register typedef
char extern return union
const float short unsigned
continue for signed void
default goto sizeof volatile
do if static while

Keywords added in C99 standard

_Bool _Complex _Imaginary inline restrict

Keywords added in C11 draft standard

_Alignas _Alignof _Atomic _Generic _Noreturn _Static_assert _Thread_local
Fig. 2.15 | C's keywords.

2.7 Secure C Programming

We mentioned The CERT C Secure Coding Standard in the Preface and indicated that we
would follow certain guidelines that will help you avoid programming practices that open
systems to attacks.

Avoid Single-Argument printfs

One such guideline is to avoid using printf with a single string argument. If you need to dis-
play a string that terminates with a newline, use the puts function, which displays its string
argument followed by a newline character. For example, in Fig. 2.1, line 8

printf();
should be written as:
puts)

We did not include \n in the preceding string because puts adds it automatically.

If you need to display a string without a terminating newline character, use printf
with zwo arguments—a "%s" format control string and the string to display. The %s con-
version specifier is for displaying a string. For example, in Fig. 2.3, line 8

printf();
should be written as:

printf(s);

3. For more information, see CERT C Secure Coding rule FIO30-C (www.securecoding.cert.org/
confluence/display/seccode/FI030-C.+Exclude+user+input+from+format+strings). In Chap-
ter 6’s Secure C Programming section, we'll explain the notion of user input as referred to by this CERT
guideline.

www.securecoding.cert.org/confluence/display/seccode/FIO30-C.+Exclude+user+input+from+format+strings
www.securecoding.cert.org/confluence/display/seccode/FIO30-C.+Exclude+user+input+from+format+strings

Summary 59

Although the printfs in this chapter as written are actually 7ot insecure, these changes
are responsible coding practices that will eliminate certain security vulnerabilities as we get
deeper into C—we’ll explain the rationale later in the book. From this point forward, we use
these practices in the chapter examples and you should use them in your exercise solutions.

scanf and printf, scanf_s and printf_s

We introduced scanf and printf in this chapter. We'll be saying more about these in sub-
sequent Secure C Coding Guidelines sections. We'll also discuss scanf_s and printf_s,
which were introduced in C11.

Summary

Section 2.1 Introduction
* The C language facilitates a structured and disciplined approach to computer-program design.

Section 2.2 A Simple C Program: Printing a Line of Text
* Comments begin with //. Comments document programs and improve program readability. C
also supports older-style multi-line comments that begin with /* and end with */.

* Comments do not cause the computer to perform any action when the program is run. They’re
ignored by the C compiler and do not cause any machine-language object code to be generated.

* Lines beginning with # are processed by the preprocessor before the program is compiled. The
#include directive tells the preprocessor to include the contents of another file.

* The <stdio.h> header contains information used by the compiler when compiling calls to stan-
dard input/output library functions such as printf.

* The function main is a part of every C program. The parentheses after main indicate that main is
a program building block called a function. C programs contain one or more functions, one of
which must be main. Every program in C begins executing at the function main.

* Functions can return information. The keyword int to the left of main indicates that main “re-
turns” an integer (whole-number) value.

* Functions can receive information when they’re called upon to execute. The void in parentheses
after main indicates that main does not receive any information.

* Aleft brace, {, begins the body of every function. A corresponding right brace, }, ends each func-
tion. This pair of braces and the portion of the program between the braces is called a block.

* The printf function instructs the computer to display information on the screen.
* A string is sometimes called a character string, a message or a literal.
* Every statement must end with a semicolon (also known as the statement terminator).

* In\n, the backslash (\) is called an escape character. When encountering a backslash in a string,
the compiler looks ahead at the next character and combines it with the backslash to form an
escape sequence. The escape sequence \n means newline.

* When a newline appears in the string output by a printf, the newline causes the cursor to posi-
tion to the beginning of the next line on the screen.

* The double backslash (\\) escape sequence can be used to place a single backslash in a string.

* The escape sequence \" represents a literal double-quote character.

Section 2.3 Another Simple C Program: Adding Two Integers

* A variable is a location in memory where a value can be stored for use by a program.

60 Chapter 2 Introduction to C Programming

* Variables of type int hold integer values, i.e., whole numbers such as 7, 11, 0, 31914.
* All variables must be defined with a name and a data type before they can be used in a program.

* A variable name in C is any valid identifier. An identifier is a series of characters consisting of
letters, digits and underscores (_) that does not begin with a digit.

¢ C is case sensitive—uppercase and lowercase letters are different in C.

* Micosoft Visual C++ requires variable definitions in C programs to be placed after the left brace
of a function and before any executable statements. GNU gcc and some other compilers do not
have this restriction.

* A syntax error is caused when the compiler cannot recognize a statement. The compiler normally
issues an error message to help you locate and fix the incorrect statement. Syntax errors are vio-
lations of the language. Syntax errors are also called compile errors, or compile-time errors.

e Standard Library function scanf can be used to obtain input from the standard input, which is
usually the keyboard.

* The scanf format control string indicates the type(s) of data that should be input.

* The %d conversion specifier indicates that the data should be an integer (the letter d stands for
“decimal integer”). The % in this context is treated by scanf (and printf) as a special character
that begins a conversion specifier.

* The arguments that follow scanf’s format control string begin with an ampersand (&)—called
the address operator in C—followed by a variable name. The ampersand, when combined with
a variable name, tells scanf the location in memory at which the variable is located. The com-
puter then stores the value for the variable at that location.

* Most calculations are performed in assignment statements.
* The = operator and the + operator are binary operators—each has two operands.

* In a printf that specifies a format control string as its first argument the conversion specifiers
indicate placeholders for data to output.

Section 2.4 Memory Concepts
* Variable names correspond to locations in the computer’s memory. Every variable has a name, a

type and a value.

* Whenever a value is placed in a memory location, the value replaces the previous value in that
location; thus, placing a new value into a memory location is said to be destructive.

* When a value is read from a memory location, the process is said to be nondestructive.

Section 2.5 Arithmetic in C

* Inalgebra, if we want to multiply 2 times &, we can simply place these single-letter variable names
side by side as in b. In C, however, if we were to do this, ab would be interpreted as a single,
two-letter name (or identifier). Therefore, C (like other programming languages, in general) re-
quires that multiplication be explicitly denoted by using the * operator, as in a * b.

* Arithmetic expressions in C must be written in straight-line form to facilitate entering programs
into the computer. Thus, expressions such as “a divided by b” must be written as a/b, so that all
operators and operands appear in a straight line.

* Parentheses are used to group terms in C expressions in much the same manner as in algebraic
expressions.

¢ C evaluates arithmetic expressions in a precise sequence determined by the following rules of op-
erator precedence, which are generally the same as those followed in algebra.

Terminology 61

Multiplication, division and remainder operations are applied first. If an expression contains sev-
eral multiplication, division and remainder operations, evaluation proceeds from left to right.
Multiplication, division and remainder are said to be on the same level of precedence.

Addition and subtraction operations are evaluated next. If an expression contains several addition
and subtraction operations, evaluation proceeds from left to right. Addition and subtraction also
have the same level of precedence, which is lower than the precedence of the multiplication, di-
vision and remainder operators.

The rules of operator precedence specify the order C uses to evaluate expressions. The associativ-
ity of the operators specifies whether they evaluate from left to right or from right to left.

Section 2.6 Decision Making: Equality and Relational Operators

Executable C statements either perform actions or make decisions.

C’s if statement allows a program to make a decision based on the truth or falsity of a statement
of fact called a condition. If the condition is met (i.e., the condition is true) the statement in the
body of the i f statement executes. If the condition isn’t met (i.e., the condition is false) the body
statement does not execute. Whether the body statement is executed or not, after the if state-
ment completes, execution proceeds with the next statement after the if statement.

Conditions in 1 f statements are formed by using the equality operators and relational operators.

The relational operators all have the same level of precedence and associate left to right. The
equality operators have a lower level of precedence than the relational operators and they also as-
sociate left to right.

To avoid confusing assignment (=) and equality (==), the assignment operator should be read
“gets” and the equality operator should be read “double equals.”

In C programs, white-space characters such as tabs, newlines and spaces are normally ignored.
So, statements may be split over several lines. It’s not correct to split identifiers.

Keywords (or reserved words) have special meaning to the C compiler, so you cannot use them
as identifiers such as variable names.

Section 2.7 Secure C Programming

One practice to help avoid leaving systems open to attacks is to avoid using printf with a single
string argument.

To display a string followed by a newline character, use the puts function, which displays it’s
string argument followed by a newline character.

To display a string without a trailing newline character, you can use printf the format string ar-
gument "%s" followed by a second argument representing the string to display. The conversion
specification %s is for displaying a string.

Terminology

+ addition operator 50 argument 43

/ division operator 50 arithmetic operators 50
* multiplication operator 50 assignment statement 48
% remainder operator 50 associativity 51

- subtraction operator 50 body 42

%d conversion specifier 47 C preprocessor 42

%s conversion specifier 58 case sensitive 46

action 43 character string 43
action/decision model 43 comment (//) 41

address operator (&) 47 comment (/*...*/) 42

62 Chapter 2 Introduction to C Programming

condition 54 nested parentheses 51
decision 43 newline (\n) 43

definition 46 nondestructive 50
destructive 49 operand 48

document a program 41 percent sign (%) 50
embedded parentheses 51 printf function 43

Enter key 47 prompt 47

equality operator 54 puts function 58

escape character 43 redundant parentheses 54
escape sequence 43 relational operator 54
executable 44 right brace (}) 42

false 54 rules of operator precedence 51
flow of control 57 scanf function 47

format control string 47 single-line comment (//) 41
function 42 statement 43

identifier 46 statement terminator (;) 43
if statement 54 <stdio.h> (standard input/output) header 42
int type 46 straight-line form 51
integer 46 string 43

integer division 50 true 54

interactive computing 48 type 49

keyword 57 value 49

literal 43 variable 46

message 43 white space 42

Self-Review Exercises

2.1

2.2

Fill in the blanks in each of the following.

a) Every C program begins execution at the function .

b) Every function’s body begins with and ends with

c) Every statement ends with a(n) .

d) The standard library function displays information on the screen.

e) The escape sequence \n represents the character, which causes the cursor
to position to the beginning of the next line on the screen.

f) The Standard Library function is used to obtain data from the keyboard.

g) The conversion specifier is used in a scanf format control string to indicate
that an integer will be input and in a printf format control string to indicate that an
integer will be output.

h) Whenever a new value is placed in a memory location, that value overrides the previous
value in that location. This process is said to be .

i) When a value is read from a memory location, the value in that location is preserved;
this process is said to be

j) The statement is used to make decisions.

State whether each of the following is z7ue or false. If false, explain why.

a) Function printf always begins printing at the beginning of a new line.

b) Comments cause the computer to display the text after // on the screen when the pro-
gram is executed.

¢) The escape sequence \n when used in a printf format control string causes the cursor
to position to the beginning of the next line on the screen.

d) All variables must be defined before they’re used.

e) All variables must be given a type when they’re defined.

f)

g)
h)

i)
j)
k)

Answers to Self-Review Exercises 63

C considers the variables number and NuMbEr to be identical.

Definitions can appear anywhere in the body of a function.

All arguments following the format control string in a printf function must be preced-
ed by an ampersand (&).

The remainder operator (%) can be used only with integer operands.

The arithmetic operators *, /, %, + and - all have the same level of precedence.

A program that prints three lines of output must contain three printf statements.

2.3 Write a single C statement to accomplish each of the following;

a)
b)

<)
d)
e)
f

g)
h)

Define the variables c, thisvariable, q76354 and number to be of type int.

Prompt the user to enter an integer. End your prompting message with a colon (:) fol-
lowed by a space and leave the cursor positioned after the space.

Read an integer from the keyboard and store the value entered in integer variable a.

If number is not equal to 7, print "The variable number is not equal to 7."

Print the message "This is a C program." on one line.

Print the message "This is a C program." on two lines so that the first line ends with C.
Print the message "This is a C program." with each word on a separate line.

Print the message "This is a C program." with the words separated by tabs.

2.4 Write a statement (or comment) to accomplish each of the following:

a)
b)
<)
d)
e)

)

State that a program will calculate the product of three integers.

Define the variables x, y, z and result to be of type int.

Prompt the user to enter three integers.

Read three integers from the keyboard and store them in the variables x, y and z.
Compute the product of the three integers contained in variables x, y and z, and assign
the result to the variable result.

Print "The product is" followed by the value of the integer variable result.

2.5 Using the statements you wrote in Exercise 2.4, write a complete program that calculates
the product of three integers.

2.6 Identify and correct the errors in each of the following statements:

a)
b)
<)

d)

printf(, &number);
scanf(, &numberl, number2);
if (c <) {
printf();
}
if (¢ =) {
printf();

Answers to Self-Review Exercises

2.1 a)

main. b) left brace ({), right brace (}). c) semicolon. d) printf.) newline. f) scanf.

g) %d. h) destructive. i) nondestructive. j) if.

2.2 a)

False. Function printf always begins printing where the cursor is positioned,

and this may be anywhere on a line of the screen.

False. Comments do not cause any action to be performed when the program is exe-
cuted. They’re used to document programs and improve their readability.

True.

True.

True.

False. C is case sensitive, so these variables are unique.

64 Chapter 2 Introduction to C Programming

g) False. A variable’s definition must appear before its first use in the code. In Microsoft
Visual C++, variable definitions must appear immediately following the left brace that
begins the body of main. Later in the book we’ll discuss this in more depth as we en-
counter additional C features that can affect this issue.

h) False. Arguments in a printf function ordinarily should not be preceded by an am-
persand. Arguments following the format control string in a scanf function ordinarily
should be preceded by an ampersand. We'll discuss exceptions to these rules in
Chapter 6 and Chapter 7.

i) True.

j) False. The operators *, / and % are on the same level of precedence, and the operators +
and - are on a lower level of precedence.

k) False. A printf statement with multiple \n escape sequences can print several lines.

2.3 a) int c, thisvVariable, q76354, number;

b) printf(DE

c) scanf(, &);

d) if (number =7) {

printf();
}

e) printf();

f) printf();

g) printf();

h) printf()

2.4 a) // Calculate the product of three integers

b) dint x, y, z, result;

c) printf();

d) scanf(, &x, &y, &);

e) result = x *y * z;

f) printf(, result);

2.5 See below.

1 // Calculate the product of three integers

2 #include <stdio.h>

3

4 int main(void)

5

6 int x, y, z, result; // declare variables

7

8 printf(); // prompt

9 scanf(, &, &y, &z); // read three 1integers
10 result = x *y * z; // multiply values

11 printf(, result); // display result
12 } // end function main

2.6 a) Error: &umber.

Correction: Eliminate the & We discuss exceptions to this later.
b) Error: number2 does not have an ampersand.
Correction: number2 should be &umber2. Later in the text we discuss exceptions to this.
¢) Error: Semicolon after the right parenthesis of the condition in the i f statement.
Correction: Remove the semicolon after the right parenthesis. [/Voze: The result of this
error is that the printf statement will be executed whether or not the condition in the

Exercises 65

if statement is true. The semicolon after the right parenthesis is considered an empty
statement—a statement that does nothing.]

d) Error: => is not an operator in C.
Correction: The relational operator => should be changed to >= (greater than or equal to).

Exercises

2.7

Identify and correct the errors in each of the following statements. (Noze: There may be

more than one error per statement.)

2.8

2.9

2.11

2.12

a) scanf(, value);

b) printf(, X, Y);
c) firstNumber + secondNumber = sumOfNumbers

d) if (number => largest)

largest == number;
e) */ Program to determine the largest of three integers /*
f) Scanf(, anInteger);
g) printf(y Xy Y, X %Y D;
h) if (x=y);
printf(, X, Y)
i) print(X +Y);
j) Printf(, &value);
Fill in the blanks in each of the following:
a) are used to document a program and improve its readability.

b) The function used to display information on the screen is

c) A C statement that makes a decision is .

d) Calculations are normally performed by statements.
e) The__ function inputs values from the keyboard.

Write a single C statement or line that accomplishes each of the following:

a) Print the message “Enter two numbers.”

b) Assign the product of variables b and ¢ to variable a.

¢) State that a program performs a sample payroll calculation (i.e., use text that helps to
document a program).

d) Input three integer values from the keyboard and place them in integer variables a, b
and c.

State which of the following are zrue and which are false. If false, explain your answer.

a) C operators are evaluated from left to right.

b) The following are all valid variable names: _under_bar_, m928134, t5, j7, her_sales,
his_account_total, a, b, c, z, z2.

¢) The statement printf("a = 5;"); is a typical example of an assignment statement.

d) A valid arithmetic expression containing no parentheses is evaluated from left to right.

¢) The following are all invalid variable names: 3g, 87, 67h2, h22, 2h.

Fill in the blanks in each of the following:
a) What arithmetic operations are on the same level of precedence as multiplication?

b) When parentheses are nested, which set of parentheses is evaluated first in an arithmetic
expression? .

¢) Alocation in the computer’s memory that may contain different values at various times
throughout the execution of a program is called a

What, if anything, prints when each of the following statements is performed? If nothing

prints, then answer “Nothing.” Assume x = 2 and y = 3.

66 Chapter 2 Introduction to C Programming

a) printf(, X)
b) printf(, X+ X);
c) printf(V3
d) printf(, X)3
e) printf(X+ Y, Y+ X);
f) z=x+y;
g) scanf(, &, &y);
h) // printf("x +y = %d", x +y);
1) printf(N
2.13 Which, if any, of the following C statements contain variables whose values are replaced?
a) scanf(, &, &c, &d, &e, &F);
b) p=1+3+k+7;
c) printf()
d) printf();

2.14 Given the equation y = ax3 + 7, which of the following, if any, are correct C statements for
this equation?

Q) y=a*x*®x*x+/;

b) y=a*x*x* (x+7);
 y=Ca*x)*x*(x+7);
d) y=Ca*x)*x*x+7;
e y=a* (x*x*x)+7;

) y=a*x* (x*x+7);

2.15 State the order of evaluation of the operators in each of the following C statements and
show the value of x after each statement is performed.

Q) x=7+3%6/2-1;
b) x=2%2+2%2-2/72
O x=(2*9% 3+ (9%3/C2))));

2.16 (Arithmetic) Write a program that asks the user to enter two numbers, obtains them from
the user and prints their sum, product, difference, quotient and remainder.

2.17 (Printing Values with printf) Write a program that prints the numbers 1 to 4 on the same
line. Write the program using the following methods.

a) Using one printf statement with no conversion specifiers.

b) Using one printf statement with four conversion specifiers.

¢) Using four printf statements.

2.18 (Comparing Integers) Write a program that asks the user to enter two integers, obtains the
numbers from the user, then prints the larger number followed by the words “is 1arger.” If the
numbers are equal, print the message “These numbers are equal.” Use only the single-selection
form of the if statement you learned in this chapter.

2.19 (Arithmetic, Largest Value and Smallest Value) Write a program that inputs three different
integers from the keyboard, then prints the sum, the average, the product, the smallest and the larg-
est of these numbers. Use only the single-selection form of the 1 f statement you learned in this chap-
ter. The screen dialogue should appear as follows:

Enter three different integers: 13 27 14
Sum is 54

Average is 18

Product is 4914

Smallest is 13

Largest is 27

Exercises 67

2.20 (Diameter, Circumference and Area of a Circle) Write a program that reads in the radius
of a circle and prints the circle’s diameter, circumference and area. Use the constant value 3.14159
for 1. Perform each of these calculations inside the printf statement(s) and use the conversion spec-
ifier %f. [Note: In this chapter, we've discussed only integer constants and variables. In Chapter 3
we'll discuss floating-point numbers, i.e., values that can have decimal points.]

2.21 (Shapes with Asterisks) Write a program that prints the following shapes with asterisks.

* * * Fedededed * *

* * * %* * * 3
* * * * * ‘r
* * * %* * * *
Fdeddehdh Rk Feded * *

2.22 What does the following code print?

printf(E
2.23 (Largest and Smallest Integers) Write a program that reads in three integers and then deter-
mines and prints the largest and the smallest integers in the group. Use only the programming tech-
niques you have learned in this chapter.
2.24 (Odd or Even) Write a program that reads an integer and determines and prints whether
it’s odd or even. [Hint: Use the remainder operator. An even number is a multiple of two. Any mul-
tiple of two leaves a remainder of zero when divided by 2.]

2.25 Print your initials in block letters down the page. Construct each block letter out of the let-
ter it represents, as shown below.

PPPPPPPPP
P P
P P
P P
PP

J]
J
]
J
J13333]

DDDDDDDDD
D D
D D
D D
DDDDD

2.26 (Multiples) Write a program that reads in two integers and determines and prints whether
the first is a multiple of the second. [Hint: Use the remainder operator.]

2.27 (Checkerboard Pattern of Asterisks) Display the following checkerboard pattern with eight
printf statements and then display the same pattern with as few printf statements as possible.

68 Chapter 2 Introduction to C Programming

2.28 Distinguish between the terms fatal error and nonfatal error. Why might you prefer to ex-
perience a fatal error rather than a nonfatal error?

2.29 (Integer Value of a Character) Here’s a peek ahead. In this chapter you learned about inte-
gers and the type int. C can also represent uppercase letters, lowercase letters and a considerable
variety of special symbols. C uses small integers internally to represent each different character. The
set of characters a computer uses together with the corresponding integer representations for those
characters is called that computer’s character set. You can print the integer equivalent of uppercase
A, for example, by executing the statement

printf(s);

Write a C program that prints the integer equivalents of some uppercase letters, lowercase letters,
digits and special symbols. As a minimum, determine the integer equivalents of the following:
ABCabc012$ *+ /and the blank character.

2.30 (Separating Digits in an Integer) Write a program that inputs one five-digit number, sep-
arates the number into its individual digits and prints the digits separated from one another by three
spaces each. [Hinz: Use combinations of integer division and the remainder operation.] For exam-
ple, if the user types in 42139, the program should print

2.31 (Table of Squares and Cubes) Using only the techniques you learned in this chapter, write
a program that calculates the squares and cubes of the numbers from 0 to 10 and uses tabs to print
the following table of values:

number square cube

0 0 0

1 1 1

2 4 8

3 9 27
4 16 64
5 25 125
6 36 216
7 49 343
8 64 512
9 81 729
10 100 1000

Making a Difference

2.32 (Body Mass Index Calculator) We introduced the body mass index (BMI) calculator in
Exercise 1.14. The formulas for calculating BMI are

BMI = weightInPoundsx 703
heightInlnches x heightInlnches

or

BMI = weightInKilograms
heightInMeters X heightInMeters

Create a BMI calculator application that reads the user’s weight in pounds and height in inches
(or, if you prefer, the user’s weight in kilograms and height in meters), then calculates and displays
the user’s body mass index. Also, the application should display the following information from
the Department of Health and Human Services/National Institutes of Health so the user can eval-
uate his/her BMI:

Making a Difference 69

BMI VALUES

Underweight: less than 18.5
Normal: between 18.5 and 24.9
Overweight: between 25 and 29.9
Obese: 30 or greater

[Note: In this chapter, you learned to use the int type to represent whole numbers. The BMI calcu-
lations when done with int values will both produce whole-number results. In Chapter 4 you'll
learn to use the double type to represent numbers with decimal points. When the BMI calculations
are performed with doubles, they’ll both produce numbers with decimal points—these are called
“floating-point” numbers.]

2.33 (Car-Pool Savings Calculator) Research several car-pooling websites. Create an application
that calculates your daily driving cost, so that you can estimate how much money could be saved by
car pooling, which also has other advantages such as reducing carbon emissions and reducing traffic
congestion. The application should input the following information and display the user’s cost per
day of driving to work:

a) Total miles driven per day.

b) Cost per gallon of gasoline.

c) Average miles per gallon.

d) Parking fees per day.

e) Tolls per day.

Let’s all move one place on.

—Lewis Carroll

The wheel is come full circle.
—Wiilliam Shakespeare

All the evolution we know of
proceeds from the vague to the
definite.

—Charles Sanders Peirce

Objectives
In this chapter, you'll:

m Use basic problem-solving
techniques.

Develop algorithms through
the process of top-down,
stepwise refinement.

Use the i f selection
statement and the i f...eTse
selection statement to select
actions.

Use the whiTe repetition
statement to execute
statements in a program
repeatedly.

Use counter-controlled
repetition and sentinel-
controlled repetition.

Learn structured
programming.

Use increment, decrement
and assignment operators.

Structured Program
Development in C

3.1 Introduction 71

3.1 Introduction 3.9 Formulating Algorithms with Top-

3.2 Algorithms Down, Stepwise Refinement Case

3.3 Pseudocode Study.Z.: Sentinel-Controlled
Repetition

3.4 Control Structures 3.10 Formulating Algorithms with Top-

3.5 The if Selection Statement Down, Stepwise Refinement Case

3.6 The if...else Selection Statement Study 3: Nested Control Statements

3.7 The while Repetition Statement 3.11 Assignment Operators

3.8 Formulating Algorithms Case Study 3.12 Increment and Decrement Operators
I Counter-Controlled Repetition 3.13 Secure C Programming

Summary | Terminology | Self-Review Exercises | Answers to Self-Review Exercises | Exercises
Making a Difference

3.1 Introduction

Before writing a program to solve a particular problem, we must have a thorough under-
standing of the problem and a carefully planned solution approach. The next two chapters
discuss techniques that facilitate the development of structured computer programs. In
Section 4.12, we present a summary of the structured programming techniques developed

here and in Chapter 4.

3.2 Algorithms

The solution to any computing problem involves executing a series of actions in a specific
order. A procedure for solving a problem in terms of

1. the actions to be executed, and
2. the order in which these actions are to be executed

is called an algorithm. The following example demonstrates that correctly specifying the
order in which the actions are to be executed is important.

Consider the “rise-and-shine algorithm” followed by one junior executive for getting
out of bed and going to work: (1) Get out of bed, (2) take off pajamas, (3) take a shower,
(4) get dressed, (5) eat breakfast, (6) carpool to work. This routine gets the executive to
work well prepared to make critical decisions. Suppose that the same steps are performed
in a slightly different order: (1) Get out of bed, (2) take off pajamas, (3) get dressed, (4)
take a shower, (5) eat breakfast, (6) carpool to work. In this case, our junior executive
shows up for work soaking wet. Specifying the order in which statements are to be exe-
cuted in a computer program is called program control. In this and the next chapter, we
investigate C’s program control capabilities.

3.3 Pseudocode

Pseudocode is an artificial and informal language that helps you develop algorithms. The
pseudocode we present here is particularly useful for developing algorithms that will be

72 Chapter 3 Structured Program Development in C

converted to structured C programs. Pseudocode is similar to everyday English; it’s conve-
nient and user friendly although it’s 7oz an actual computer programming language.

Pseudocode programs are not executed on computers. Rather, they merely help you
“think out” a program before attempting to write it in a programming language like C.

Pseudocode consists purely of characters, so you may conveniently type pseudocode
programs into a computer using an editor program. A carefully prepared pseudocode pro-
gram may be easily converted to a corresponding C program. This is done in many cases
simply by replacing pseudocode statements with their C equivalents.

Pseudocode consists only of action statements—those that are executed when the pro-
gram has been converted from pseudocode to C and is run in C. Definitions are 7oz exe-
cutable statements—they’re simply messages to the compiler. For example, the definition

int i;
tells the compiler the type of variable i and instructs the compiler to reserve space in mem-
ory for the variable. But this definition does 7oz cause any action—such as input, output,
a calculation or a comparison—to occur when the program is executed. Some program-

mers choose to list each variable and briefly mention the purpose of each at the beginning
of a pseudocode program.

3.4 Control Structures

Normally, statements in a program are executed one after the other in the order in which
they’re written. This is called sequential execution. Various C statements we’ll soon dis-
cuss enable you to specify that the next statement to be executed may be ozher than the
next one in sequence. This is called transfer of control.

During the 1960s, it became clear that the indiscriminate use of transfers of control
was the root of a great deal of difficulty experienced by software development groups. The
finger of blame was pointed at the goto statement that allows you to specify a transfer of
control to one of many possible destinations in a program. The notion of so-called struc-
tured programming became almost synonymous with “goto elimination.”

The research of Bohm and Jacopini! had demonstrated that programs could be
written without any goto statements. The challenge of the era was for programmers to shift
their styles to “goto-less programming.” It was not until well into the 1970s that the pro-
gramming profession started taking structured programming seriously. The results were
impressive, as software development groups reported reduced development times, more
frequent on-time delivery of systems and more frequent within-budget completion of soft-
ware projects. Programs produced with structured techniques were clearer, easier to debug
and modify and more likely to be bug free in the first place.

Bohm and Jacopini’s work demonstrated that all programs could be written in terms
of only three control structures, namely the sequence structure, the selection structure
and the repetition structure. The sequence structure is simple—unless directed otherwise,
the computer executes C statements one after the other in the order in which they’re
written. The flowchart segment of Fig. 3.1 illustrates C’s sequence structure.

1. C. Bohm and G. Jacopini, “Flow Diagrams, Turing Machines, and Languages with Only Two For-
mation Rules,” Communications of the ACM, Vol. 9, No. 5, May 1966, pp. 336-371.

3.4 Control Structures 73

Flowcharts

A flowchart is a graphical representation of an algorithm or of a portion of an algorithm.
Flowcharts are drawn using certain special-purpose symbols such as rectangles, diamonds,
rounded rectaingles, and small circles; these symbols are connected by arrows called flowlines.

Like pseudocode, flowcharts are useful for developing and representing algorithms,
although pseudocode is preferred by most programmers. Flowcharts clearly show how
control structures operate; that’s what we use them for in this text.

Consider the flowchart for the sequence structure in Fig. 3.1. We use the rectangle
symbol, also called the action symbol, to indicate any type of action including a calcula-
tion or an input/output operation. The flowlines in the figure indicate the order in which
the actions are performed—first, grade is added to total, then 1 is added to counter. C
allows us to have as many actions as we want in a sequence structure. As we’ll soon see,
anywhere a single action may be placed, we may place several actions in sequence.

{

add grade to total total = total + grade;
add | to counter counter = counter + 1;
Fig. 3.1 | Flowcharting C's sequence structure.

When drawing a flowchart that represents a complete algorithm, a rounded rectangle
symbol containing the word “Begin” is the first symbol used in the flowchart; a rounded
rectangle symbol containing the word “End” is the last symbol used. When drawing only
a portion of an algorithm as in Fig. 3.1, the rounded rectangle symbols are omitted in favor
of using small circle symbols, also called connector symbols.

Perhaps the most important flowcharting symbol is the diamond symbol, also called
the decision symbol, which indicates that a decision is to be made. We'll discuss the
diamond symbol in the next section.

Selection Statements in C

C provides three types of selection structures in the form of statements. The i f selection
statement (Section 3.5) either selects (performs) an action if a condition is zrue or skips the
action if the condition is false. The if...else selection statement (Section 3.6) performs
an action if a condition is z7ue and performs a different action if the condition is fa/se. The
switch selection statement (discussed in Chapter 4) performs one of many different ac-
tions, depending on the value of an expression. The i f statement is called a single-selec-
tion statement because it selects or ignores a single action. The if...else statement is
called a double-selection statement because it selects between two different actions. The
switch statement is called a multiple-selection statement because it selects among many
different actions.

74 Chapter 3 Structured Program Development in C

Repetition Statements in C
C provides three types of repetition structures in the form of statements, namely while
(Section 3.7), do...while, and for (both discussed in Chapter 4).

That’s all there is. C has only seven control statements: sequence, three types of
selection and three types of repetition. Each C program is formed by combining as many
of each type of control statement as is appropriate for the algorithm the program imple-
ments. As with the sequence structure of Fig. 3.1, we’ll see that the flowchart representa-
tion of each control statement has two small circle symbols, one at the entry point to the
control statement and one at the exiz poins. These single-entry/single-exit control state-
ments make it easy to build clear programs. The control-statement flowchart segments can
be attached to one another by connecting the exit point of one control statement to the
entry point of the next. This is much like the way in which a child stacks building blocks,
so we call this control-statement stacking. We’'ll learn that there’s only one other way con-
trol statements may be connected—a method called control-statement nesting. Thus, any
C program we'll ever need to build can be constructed from only seven different types of
control statements combined in only two ways. This is the essence of simplicity.

3.5 The 1if Selection Statement

Selection statements are used to choose among alternative courses of action. For example,
suppose the passing grade on an exam is 60. The pseudocode statement

If students grade is greater than or equal to 60
Print “Passed”

determines whether the condition “student’s grade is greater than or equal to 60” is true
or false. If the condition is true, then “Passed” is printed, and the next pseudocode state-
ment in order is “performed” (remember that pseudocode isn’t a real programming lan-
guage). If the condition is false, the printing is ignored, and the next pseudocode statement
in order is performed. The second line of this selection structure is indented. Such inden-
tation is optional, but it’s highly recommended, as it helps emphasize the inherent struc-
ture of structured programs. The C compiler ignores white-space characters such as
blanks, tabs and newlines used for indentation and vertical spacing.

The preceding pseudocode /f statement may be written in C as

if (grade >=) {
printf();
} // end if

Notice that the C code corresponds closely to the pseudocode (of course you'll also
need to declare the int variable grade). This is one of the properties of pseudocode that
makes it such a useful program development tool.

The flowchart of Fig. 3.2 illustrates the single-selection if statement. This flowchart
contains what is perhaps the most important flowcharting symbol—the diamond symbol,
also called the decision symbol, which indicates that a decision is to be made. The decision
symbol contains an expression, such as a condition, that can be either true or false. The
decision symbol has zwo flowlines emerging from it. One indicates the direction to take
when the expression in the symbol is true and the other the direction to take when the
expression is false. Decisions can be based on conditions containing relational or equality

3.6 The if...eTse Selection Statement 75

operators. In fact, a decision can be based on any expression—if the expression evaluates
to zero, it’s treated as false, and if it evaluates to nonzero, it’s treated as true.

true

grade >= 60 —» print “Passed”

falseé

Fig. 3.2 | Flowcharting the single-selection if statement.

The i f statement, too, is a single-entry/single-exit statement. We’'ll soon learn that the
flowcharts for the remaining control structures can also contain (besides small circle sym-
bols and flowlines) only rectangle symbols to indicate the actions to be performed, and
diamond symbols to indicate decisions to be made. This is the action/decision model of pro-
gramming we've been emphasizing.

We can envision seven bins, each containing only control-statement flowcharts of one
of the seven types. These flowchart segments are empty—nothing is written in the rectan-
gles and nothing in the diamonds. Your task, then, is assembling a program from as many
of each type of control statement as the algorithm demands, combining them in only zwo
possible ways (stacking or nesting), and then filling in the actions and decisions in a manner
appropriate for the algorichm. We’'ll discuss the variety of ways in which actions and deci-
sions may be written.

3.6 The if...else Selection Statement

The if selection statement performs an indicated action only when the condition is true;
otherwise the action is skipped. The if...eTse selection statement allows you to specify
that different actions are to be performed when the condition is true and when it’s false.
For example, the pseudocode statement

If students grade is greater than or equal o 60
Print “Passed”
else

Print “Failed”

prints Passed if the student’s grade is greater than or equal to 60 and Failed if the student’s
grade is less than 60. In either case, after printing occurs, the next pseudocode statement
in sequence is “performed.” The body of the else is also indented.

Indent both body statements of an if...else statement.

;‘E E Good Programming Practice 3.1

76 Chapter 3 Structured Program Development in C

: If there are several levels of indentation, each level should be indented the same additional
amount of space.

% E Good Programming Practice 3.2

The preceding pseudocode If... else statement may be written in C as

if (grade >=) {
puts(D5
} // end if
else {
puts(D5

} // end else

The flowchart of Fig. 3.3 illustrates the flow of control in the if...eTse statement.
Once again, besides small circles and arrows, the only symbols in the flowchart are rectan-
gles (for actions) and a diamond (for a decision).

!

o false true .
print “Failed” -~ grade >= 60 —> print “Passed”

()t

:

Fig. 3.3 | Flowcharting the double-selection i f...e1se statement.

C provides the conditional operator (?:), which is closely related to the if...e1se
statement. The conditional operator is C’s only ternary operator—it takes #hree operands.
These together with the conditional operator form a conditional expression. The first
operand is a condition. The second operand is the value for the entire conditional
expression if the condition is #7ue and the operand is the value for the entire conditional
expression if the condition is false. For example, the puts statement

puts(grade >= ? :)

contains as its second argument a conditional expression that evaluates to the string
"Passed" if the condition grade >= 60 is true and to the string "Failed" if the condition
is false. The puts statement performs in essentially the same way as the preceding
if...else statement.

The second and third operands in a conditional expression can also be actions to be
executed. For example, the conditional expression

grade >= ? puts() : puts()3

is read, “If grade is greater than or equal to 60, then puts("Passed"), otherwise
puts("Failed").” This, too, is comparable to the preceding if...el1se statement. We'll

3.6 The if...eTse Selection Statement 77

see that conditional operators can be used in some places where i f...e1se statements can-
not.

Nested iF...else Statements

Nested if...else statements test for multiple cases by placing i f...e1se statements 7nside
if...else statements. For example, the following pseudocode statement will print A for
exam grades greater than or equal to 90, B for grades greater than or equal to 80 (but less
than 90), C for grades greater than or equal to 70 (but less than 80), D for grades greater
than or equal to 60 (but less than 70), and F for all other grades.

If students grade is greater than or equal ro 90
Print ‘A
else
If students grade is greater than or equal ro 80
Print “B”
else
[f students gmde is greater than or equﬂ/ to 70
Print “C”
else
If students grade is greater than or equal to 60
Print “D”
else

Print “F”
This pseudocode may be written in C as

if (grade >=) {
puts(Dk
} // end if
else {
if (grade >=) {
puts('E");
} // end if
else {
if (grade >=) {
puts('C");
} // end if
else {
if (grade >=) {
puts(Dk
} // end if
else {
puts(Dk
} // end else
} // end else
} // end else
} // end else

If the variable grade is greater than or equal to 90, all four conditions will be true, but only
the puts statement after the first test will by executed. After that puts is executed, the else
part of the “outer” if...else statement is skipped.

78 Chapter 3 Structured Program Development in C

You may prefer to write the preceding if statement as

if (grade >=) {
puts(DE

} // end if

else if (grade >=) {
puts(DE

} // end else if

else if (grade >=) {
puts(DE

} // end else if

else if (grade >=) {
puts(DE

} // end else if

else {
puts(DE

} // end else

As far as the C compiler is concerned, both forms are equivalent. The latter form is popular
because it avoids the deep indentation of the code to the right. Such indentation often
leaves little room on a line, forcing lines to be split and decreasing program readability.

The if selection statement expects only one statement in its body—if you have only
one statement in the if’s body, you do 7oz need the enclose it in braces. To include several
statements in the body of an if, you must enclose the set of statements in braces ({ and
}). A set of statements contained within a pair of braces is called a compound statement
or a block.

Software Engineering Observation 3.1
A compound statement can be placed anywhere in a program that a single statement can

0N e placed.

The following example includes a compound statement in the else part of an
if...else statement.

if (grade >=) {
puts(D5
} // end if
else {
puts(D5
puts(N

} // end else

In this case, if grade is less than 60, the program executes bozh puts statements in the body
of the e1se and prints

Failed.
You must take this course again.

The braces surrounding the two statements in the else clause are important. Without
them, the statement

puts()

would be outside the body of the else part of the if and would execute regardless of
whether the grade was less than 60.

3.7 Thewh1i1e Repetition Statement 79

A syntax error is caught by the compiler. A logic error has its effect at execution time.
A faral logic error causes a program to fail and terminate prematurely. A nonfatal logic error
allows a program to continue executing but to produce incorrect results.

Just as a compound statement can be placed anywhere a single statement can be
placed, it’s also possible to have no statement at all, i.e., the empty statement. The empty
statement is represented by placing a semicolon (;) where a statement would normally be.

Placing a semicolon after the condition in an if statement as in if (grade >= 60) ; leads
to a logic error in single-selection if statements and a syntax error in double-selection if

: 3? Common Programming Error 3.1

Statements.

_ Error-Prevention Tip 3.1
% Typing the beginning and ending braces of compound statements before typing the indi-
vidual statements within the braces helps avoid omitting one or both of the braces, pre-
venting syntax errors and logic errors (where both braces are indeed required).

3.7 The while Repetition Statement

A repetition statement (also called an iteration statement) allows you to specify that an
action is to be repeated while some condition remains true. The pseudocode statement

While there are more items on my shopping list
Purchase next item and cross it off my list

describes the repetition that occurs during a shopping trip. The condition, “there are more
items on my shopping list” may be true or false. If it’s true, then the action, “Purchase next
item and cross it off my list” is performed. This action will be performed repeatedly while
the condition remains true. The statement(s) contained in the while repetition statement
constitute the body of the while. The while statement body may be a single statement or a
compound statement.

Eventually, the condition will become false (when the last item on the shopping list
has been purchased and crossed off the list). At this point, the repetition terminates, and
the first pseudocode statement affer the repetition structure is executed.

Not providing in the body of a while statement an action that eventually causes the con-
dition in the while to become false. Normally, such a repetition structure will never ter-
minate—an error called an “infinite loop.”

: a ? Common Programming Error 3.2

- Spelling the keyword while with an uppercase W, as in While (remember that C is a case-
sensitive language).

; a ? Common Programming Error 3.3

As an example of a while statement, consider a program segment designed to find the
first power of 3 larger than 100. Suppose the integer variable product has been initialized
to 3. When the following whi e repetition statement finishes executing, product will con-
tain the desired answer:

80 Chapter 3 Structured Program Development in C

product = *;
while (product <=) {
product = : * product;

} // end while

The flowchart of Fig. 3.4 illustrates the flow of control in the while repetition state-
ment. Once again, note that (besides small circles and arrows) the flowchart contains only
a rectangle symbol and a diamond symbol. The flowchart clearly shows the repetition. The
flowline emerging from the rectangle wraps back to the decision, which is tested each time
through the loop until the decision eventually becomes false. At this point, the whiTe state-
ment is exited and control passes to the next statement in the program.

true
product <= 100 — product =3 * product

falsel

(©)

Fig. 3.4 | Flowcharting the while repetition statement.

When the whiTe statement is entered, the value of product is 3. The variable product
is repeatedly multiplied by 3, taking on the values 9, 27 and 81 successively. When
product becomes 243, the condition in the while statement, product <= 100, becomes
false. This terminates the repetition, and the final value of product is 243. Program exe-
cution continues with the next statement after the while.

3.8 Formulating Algorithms Case Study I: Counter-
Controlled Repetition

To illustrate how algorithms are developed, we solve several variations of a class-averaging
problem. Consider the following problem statement:

A class of ten students took a quiz. The grades (integers in the range 0 ro 100) for this
quiz are available to you. Determine the class average on the quiz.

The class average is equal to the sum of the grades divided by the number of students. The
algorithm for solving this problem on a computer must input each of the grades, perform
the averaging calculation, and print the result.

Let’s use pseudocode to list the actions to execute and specify the order in which these
actions should execute. We use counter-controlled repetition to input the grades one at a
time. This technique uses a variable called a counter to specify the number of times a set
of statements should execute. In this example, repetition terminates when the counter
exceeds 10. In this section we simply present the pseudocode algorithm (Fig. 3.5) and the

3.8 Counter-Controlled Repetition 8l

corresponding C program (Fig. 3.6). In the next section we show how pseudocode algo-
rithms are developed. Counter-controlled repetition is often called definite repetition
because the number of repetitions is known before the loop begins executing,

Set total to zero
Set grade counter to one

While grade counter is less than or equal to ten
Input the next grade
Add the grade into the total
Add one to the grade counter

Set the class average to the total divided by ten
Print the class average

C VWO ~NOGONWUDBD WN=

Fig. 3.5 | Pseudocode algorithm that uses counter-controlled repetition to solve the class-average

problem.
1 // Fig. 3.6: fig03_06.c
2 // Class average program with counter-controlled repetition.
3 #include <stdio.h>
4
5 // function main begins program execution
6 1int main(void)
7 {
8 unsigned int counter; // number of grade to be entered next
9 int grade; // grade value
10 int total; // sum of grades entered by user
11 int average; // average of grades
12
13 // initialization phase
14 total = 0; // initialize total
15 counter = 1; // initialize Toop counter
16
17 // processing phase
18 while (counter <=) { // loop 10 times
19 printf(s); // prompt for dinput
20 scanf(, &grade); // read grade from user
21 total = total + grade; // add grade to total
22 counter = counter + !; // increment counter
23 } // end while
24
25 // termination phase
26 average = total / ; // integer division
27
28 printf(, average); // display result

29 1} // end function main

Fig. 3.6 | Class-average problem with counter-controlled repetition. (Part | of 2.)

82 Chapter 3 Structured Program Development in C

Enter grade: 98
Enter grade: 76
Enter grade: 71
Enter grade: 87
Enter grade: 83
Enter grade: 90
Enter grade: 57
Enter grade: 79
Enter grade: 82
Enter grade: 94
Class average is 81

Fig. 3.6 | Class-average problem with counter-controlled repetition. (Part 2 of 2.)

The algorithm mentions a total and a counter. A total is a variable used to accumulate
the sum of a series of values. A counter is a variable (line 8) used to count—in this case, to
count the number of grades entered. Because the counter variable is used to count from 1
to 10 in this program (all positive values), we declared the variable as an unsigned int,
which can store only non-negative values (that is, 0 and higher). Variables used to store
totals should normally be initialized to zero before being used in a program; otherwise the
sum would include the previous value stored in the total’s memory location. Counter vari-
ables are normally initialized to zero or one, depending on their use (we’ll present examples
of each). An uninitialized variable contains a “garbage” value—the value last stored in the
memory location reserved for that variable.

’ o mae E . .
Ifa counter or total isn't initialized, the results of your program will probably be incorrect.
This is an example of a logic error.

é i ? Common Programming Error 3.4

% Error-Prevention Tip 3.2

Initialize all counters and totals.

The averaging calculation in the program produced an integer result of 81. Actually,
the sum of the grades in this example is 817, which when divided by 10 should yield 81.7,
i.e., a number with a decimal point. We'll see how to deal with such numbers (called
floating-point numbers) in the next section.

3.9 Formulating Algorithms with Top-Down, Stepwise
Refinement Case Study 2: Sentinel-Controlled

Repetition
Let’s generalize the class-average problem. Consider the following problem:

Develop a class-averaging program that will process an arbitrary number of grades
each time the program is run.

In the first class-average example, the number of grades (10) was known in advance. In this
example, no indication is given of how many grades are to be entered. The program must

3.9 Sentinel-Controlled Repetition 83

process an arbitrary number of grades. How can the program determine when to stop the
input of grades? How will it know when to calculate and print the class average?

One way to solve this problem is to use a special value called a sentinel value (also
called a signal value, a dummy value, or a flag value) to indicate “end of data entry.” The
user types in grades until all legizimare grades have been entered. The user then types the
sentinel value to indicate “the last grade has been entered.” Sentinel-controlled repetition
is often called indefinite repetition because the number of repetitions isn’t known before
the loop begins executing.

Clearly, the sentinel value must be chosen so that it cannor be confused with an
acceptable input value. Because grades on a quiz are normally nonnegative integers, —1 is
an acceptable sentinel value for this problem. Thus, a run of the class-average program
might process a stream of inputs such as 95, 96, 75, 74, 89 and —1. The program would
then compute and print the class average for the grades 95, 96, 75, 74, and 89 (-1 is the
sentinel value, so it should 7oz enter into the averaging calculation).

Top-Down, Stepwise Refinement

We approach the class-average program with a technique called top-down, stepwise re-
finement, a technique that’s essential to the development of well-structured programs. We
begin with a pseudocode representation of the top:

Determine the class average for the quiz
&

The top is a single statement that conveys the program’s overall function. As such, the top
is, in effect, a complete representation of a program. Unfortunately, the top rarely conveys
a sufficient amount of detail for writing the C program. So we now begin the refinement
process. We divide the top into a series of smaller tasks and list these in the order in which
they need to be performed. This results in the following first refinement.

Initialize variables
Input, sum, and count the quiz grades
Caleulate and print the class average

Here, only the sequence structure has been used—the steps listed are to be executed in or-
der, one after the other.

Software Engineering Observation 3.2
Each refinement, as well as the top itself, is a complete specification of the algorithm; only
=—23) the level of detail varies.

Second Refinement

To proceed to the next level of refinement, i.e., the second refinement, we commit to spe-
cific variables. We need a running total of the numbers, a count of how many numbers
have been processed, a variable to receive the value of each grade as it’s input and a variable
to hold the calculated average. The pseudocode statement

Initialize variables
may be refined as follows:

Initialize total to zero
Initialize counter to zero

84 Chapter 3 Structured Program Development in C

Notice that only the total and counter need to be initialized; the variables average and
grade (for the calculated average and the user input, respectively) need not be initialized
because their values will be written over by the process of destructive read-in discussed in
Chapter 2. The pseudocode statement

[nput, sum, and count the quz'z gmdcy

requires a repetition structure that successively inputs each grade. Because we do not know
in advance how many grades are to be processed, we’ll use sentinel-controlled repetition.
The user will enter legitimate grades one at a time. After the last legitimate grade is typed,
the user will type the sentinel value. The program will test for this value after each grade
is input and will terminate the loop when the sentinel is entered. The refinement of the
preceding pseudocode statement is then

Input the first grade

While the user has not as yet entered the sentinel
Add this grade into the running total
Add one to the grade counter
Input the next grade (possibly the sentinel)

Notice that in pseudocode, we do 70t use braces around the set of statements that
form the body of the while statement. We simply indent all these statements under the
while to show that they all belong to the while. Again, pseudocode is an informal program
development aid.

The pseudocode statement

Calculate and print the class average

may be refined as follows:

If the counter is not equal to zero
Set the average to the total divided by the counter
Print the average

else
Print “No grades were entered”

Notice that we're being careful here to test for the possibility of division by zero—a fatal
error that if undetected would cause the program to fail (often called “crashing”). The
complete second refinement is shown in Fig. 3.7.

An attempt to divide by zero causes a fatal error.

; a ? Common Programming Error 3.5

a7, Good Programming Practice 3.3
" When performing division by an expression whose value could be zero, explicitly test for
this case and handle it appropriately in your program (such as printing an error message)

rather than allowing the fatal error to occur.

In Fig. 3.5 and Fig. 3.7, we include some completely blank lines in the pseudocode
for readability. Actually, the blank lines separate these programs into their various phases.

3.9 Sentinel-Controlled Repetition 85

I Initialize total to zero
2 [Initialize counter to zero
3
4 Input the first grade
5 While the user has not as yet entered the sentinel
6 Add this grade into the running rotal
7 Add one to the grade counter
8 Input the next grade (possibly the sentinel)
9
10 If'the counter is not equal to zero
11 Set the average to the total divided by the counter
12 Print the average
13 else
14 Print “No grades were entered”

Fig. 3.7 | Pseudocode algorithm that uses sentinel-controlled repetition to solve the class-
average problem.

9 Software Engineering Observation 3.3

Many programs can be divided logically into three phases: an initialization phase that
initializes the program variables; a processing phase that inputs data values and adjusts
program variables accordingly; and a termination phase that calculates and prints the
[final resulss.

The pseudocode algorithm in Fig. 3.7 solves the more general class-averaging
problem. This algorithm was developed after only two levels of refinement. Sometimes
more levels are necessary.

9 Software Engineering Observation 3.4

INE8 You terminate the top-down, stepwise refinement process when the pseudocode algorithm
=23) is specified in sufficient detail for you to be able to convert the pseudocode to C.
Implementing the C program is then normally straightforward.

&1

The C program and a sample execution are shown in Fig. 3.8. Although only integer
grades are entered, the averaging calculation is likely to produce a number with a decimal
point. The type int cannot represent such a number. The program introduces the data
type float to handle numbers with decimal points (called floating-point numbers) and
introduces a special operator called a cast operator to handle the averaging calculation.
These features are explained after the program is presented.

1 // Fig. 3.8: fig03_08.c

2 // Class-average program with sentinel-controlled repetition.
3 #include <stdio.h>
4

Fig. 3.8 | Class-average program with sentinel-controlled repetition. (Part | of 3.)

86 Chapter 3 Structured Program Development in C

5 // function main begins program execution

6 int main(void)

7 {

8 unsigned int counter; // number of grades entered

9 int grade; // grade value

10 int total; // sum of grades

11

12 float average; // number with decimal point for average
13

14 // initialization phase

15 total = 0; // initialize total

16 counter = 0; // initialize Tloop counter

17

18 // processing phase

19 // get first grade from user

20 printf(.); // prompt for input
21 scanf(, &grade); // read grade from user

22

23 // loop while sentinel value not yet read from user
24 while (grade !=) {

25 total = total + grade; // add grade to total

26 counter = counter + 1; // increment counter

27

28 // get next grade from user

29 printf(s); // prompt for input
30 scanf(, &grade); // read next grade

31 } // end while

32

33 // termination phase

34 // if user entered at Teast one grade

35 if (counter !=) {

36

37 // calculate average of all grades entered

38 average = (float) total / counter; // avoid truncation
39

40 // display average with two digits of precision
41 printf(, average);

42 } // end if

43 else { // if no grades were entered, output message
44 puts(N

45 } // end else

46 } // end function main

Enter grade, -1 to end: 75
Enter grade, -1 to end: 94
Enter grade, -1 to end: 97
Enter grade, -1 to end: 88
Enter grade, -1 to end: 70
Enter grade, -1 to end: 64
Enter grade, -1 to end: 83
Enter grade, -1 to end: 89
Enter grade, -1 to end: -1
Class average is 82.50

Fig. 3.8 | Class-average program with sentinel-controlled repetition. (Part 2 of 3.)

3.9 Sentinel-Controlled Repetition 87

Enter grade, -1 to end: -1
No grades were entered

Fig. 3.8 | Class-average program with sentinel-controlled repetition. (Part 3 of 3.)

Notice the compound statement in the while loop (line 24) in Fig. 3.8. Once again,
the braces are necessary to ensure that all four statements are executed within the loop.
Without the braces, the last three statements in the body of the loop would fall ousside the
loop, causing the computer to interpret this code incorrectly as follows.

while (grade !=)
total = total + grade; // add grade to total
counter = counter + !; // increment counter
printf(,); // prompt for input
scanf(, &grade); // read next grade

This would cause an #nfinite loop if the user did not input -1 for the first grade.

Good Programming Practice 3.4
q j% In a sentinel-controlled loop, the prompts requesting data entry should explicitly remind

the user what the sentinel value is.

Converting Between Types Explicitly and Implicitly

Averages do not always evaluate to integer values. Often, an average is a value such as 7.2
or —93.5 that contains a fractional part. These values are referred to as floating-point num-
bers and can be represented by the data type float. The variable average is defined to be
of type float (line 12) to capture the fractional result of our calculation. However, the
result of the calculation total / counter is an integer because total and counter are bozh
integer variables. Dividing two integers results in integer division in which any fractional
part of the calculation is truncated (i.c., lost). Because the calculation is performed firsz,
the fractional part is lost before the result is assigned to average. To produce a floating-
point calculation with integer values, we must create temporary values that are floating-
point numbers. C provides the unary cast operator to accomplish this task. Line 38

average = (float) total / counter;

includes the cast operator (float), which creates a zemporary floating-point copy of its op-
erand, total. The value stored in total is still an integer. Using a cast operator in this
manner is called explicit conversion. The calculation now consists of a floating-point val-
ue (the temporary float version of total) divided by the unsigned int value stored in
counter. C evaluates arithmetic expressions only in which the data types of the operands
are identical. To ensure that the operands are of the same type, the compiler performs an
operation called implicit conversion on selected operands. For example, in an expression
containing the data types unsigned int and float, copies of unsigned int operands are
made and converted to float. In our example, after a copy of counter is made and con-
verted to float, the calculation is performed and the result of the floating-point division
is assigned to average. C provides a set of rules for convertion of operands of different
types. We discuss this further in Chapter 5.

88 Chapter 3 Structured Program Development in C

Cast operators are available for most data types—they’re formed by placing paren-
theses around a type name. Each cast operator is a unary operator, i.e., an operator that
takes only one operand. In Chapter 2, we studied the binary arithmetic operators. C also
supports unary versions of the plus (+) and minus (-) operators, so you can write expres-
sions such as -7 or +5. Cast operators associate from right to left and have the same prece-
dence as other unary operators such as unary + and unary -. This precedence is one level
higher than that of the multiplicative operators #, / and %.

Formatting Floating-Point Numbers

Figure 3.8 uses the printf conversion specifier %.2f (line 41) to print the value of aver-
age. The f specifies that a floating-point value will be printed. The .2 is the precision with
which the value will be displayed—with 2 digits to the right of the decimal point. If the
%f conversion specifier is used (without specifying the precision), the default precision of
6 is used—exactly as if the conversion specifier %. 6f had been used. When floating-point
values are printed with precision, the printed value is rounded to the indicated number of
decimal positions. The value in memory is unaltered. When the following statements are
executed, the values 3.45 and 3.4 are printed.

printf(, 3.446); // prints 3.45
printf(, 3.446); // prints 3.4

im Using precision in a conversion specification in the format control string of a scanf state-
ment is wrong. Precisions are used only in printf conversion specifications.

; i ? Common Programming Error 3.6

Notes on Floating-Point Numbers

Although floating-point numbers are not always “100% precise,” they have numerous ap-
plications. For example, when we speak of a “normal” body temperature of 98.6, we do
not need to be precise to a large number of digits. When we view the temperature on a
thermometer and read it as 98.6, it may actually be 98.5999473210643. The point here
is that calling this number simply 98.6 is fine for most applications. We’ll say more about
this issue later.

Another way floating-point numbers develop is through division. When we divide 10
by 3, the result is 3.3333333... with the sequence of 3s repeating infinitely. The computer
allocates only a fixed amount of space to hold such a value, so the stored floating-point
value can be only an approximation.

Using floating-point numbers in a manner that assumes they re represented precisely can
lead o incorrect results. Floating-point numbers are represented only approximately by
most computers.

_ S ? Common Programming Error 3.7

Error-Prevention Tip 3.3
Do not compare floating-point values for equality.

3.10 Nested Control Statements 89

3.10 Formulating Algorithms with Top-Down, Stepwise
Refinement Case Study 3: Nested Control Statements

Let’s work another complete problem. We'll once again formulate the algorithm using
pseudocode and top-down, stepwise refinement, and write a corresponding C program.
We've seen that control statements may be szacked on top of one another (in sequence) just
as a child stacks building blocks. In this case study we'll see the only other structured way
control statements may be connected in C, namely through nesting of one control state-
ment within another.

Consider the following problem statement:

A college offers a course that prepares students for the state licensing exam for real
estate brokers. Last year, 10 of the students who completed this course took the licens-
ing examination. Naturally, the college wants to know how well its students did on the
exam. Youve been asked to write a program to summarize the results. Youve been
given a list of these 10 students. Next to each name a 1 is written if the student passed
the exam and a 2 if the student failed.

Your program should analyze the results of the exam as follows:

1. Input each test result (i.e., a 1 or a 2). Display the prompting message “Enter result” each
time the program requests another test result.

2. Count the number of test results of each type.

3. Display a summary of the test results indicating the number of students who passed and
the number who failed.

4. If more than eight students passed the exam, print the message “Bonus to instructor!”
After reading the problem statement carefully, we make the following observations:
1. The program must process 10 test results. A counter-controlled loop will be used.

2. Each test result is a number—either a 1 or a 2. Each time the program reads a test
result, the program must determine whether the numberisa 1 ora 2. We test for
a 1 in our algorithm. If the number is nota 1, we assume that i’s a 2. (An exercise
at the end of the chapter considers the consequences of this assumption.)

3. Two counters are used—one to count the number of students who passed the
exam and one to count the number of students who failed the exam.

4. After the program has processed all the results, it must decide whether more than
8 students passed the exam.

Let’s proceed with top-down, stepwise refinement. We begin with a pseudocode rep-
resentation of the top:

Analyze exam results and decide whether instructor should receive a bonus

Once again, it’s important to emphasize that the top is a complete representation of the
program, but several refinements are likely to be needed before the pseudocode can be nat-
urally evolved into a C program. Our first refinement is

Initialize variables
Input the ten quiz grades and count passes and failures
Print a summary of the exam results and decide whether instructor should receive a bonus

90 Chapter 3 Structured Program Development in C

Here, too, even though we have a complete representation of the entire program, further
refinement is necessary. We now commit to specific variables. Counters are needed to re-
cord the passes and failures, a counter will be used to control the looping process, and a
variable is needed to store the user input. The pseudocode statement

Initialize variables
may be refined as follows:

Initialize passes to zero
Initialize failures to zero
Initialize student to one

Notice that only the counters and totals are initialized. The pseudocode statement

Input the ten quiz grades and count passes and failures

requires a loop that successively inputs the result of each exam. Here it’s known iz advance
that there are precisely ten exam results, so counter-controlled looping is appropriate. In-
side the loop (i.e., nested within the loop) a double-selection statement will determine
whether each exam result is a pass or a failure and will increment the appropriate counters
accordingly. The refinement of the preceding pseudocode statement is then

While student counter is less than or equal to ten
Input the next exam result

If the student passed
Add one to passes
else

Add one to failures

Add one to student counter

Notice the use of blank lines to set off the If...else to improve program readability.
The pseudocode statement

Print a summary of the exam results and decide whether instructor should receive a
bonus

may be refined as follows:

Print the number of passes4

Print the number of failures

If more than eight students passed
Print “Bonus to instructor!”

The complete second refinement appears in Fig. 3.9. We use blank lines to set off the
while statement for program readability.

This pseudocode is now sufficiently refined for conversion to C. The C program and
two sample executions are shown in Fig. 3.10. We've taken advantage of a feature of C
that allows initialization to be incorporated into definitions (lines 9-11). Such initializa-
tion occurs at compile time. Also, notice that when you output an unsigned int you use
the %u conversion specifier (lines 33-34).

3.10 Nested Control Statements 91

| Initialize passes to zero
2 [nitialize failures to zero
3 [nitialize student to one
4
5 While student counter is less than or equal to ten
6 Input the next exam result
7
8 If the student passed
9 Add one to passes
10 else
11 Add one to failures
12
13 Add one to student counter
14

15 Print the number of passes

16 Print the number of failures

17 If'more than eight students passed
18 Print “Bonus to instructor!”

Fig. 3.9 | Pseudocode for examination-results problem.

Software Engineering Observation 3.5

158 Experience has shown that the most difficult part of solving a problem on a computer is
=23 developing the algorithm for the solution. Once a correct algorithm has been specified, the
process of producing a working C program is normally straightforward.

Software Engineering Observation 3.6
18 Many programmers write programs without ever using program development tools such
==L as pseudocode. They feel that their ultimate goal is to solve the problem on a computer and
that writing pseudocode merely delays the production of final outputs.

1 // Fig. 3.10: fig03_10.c

2 // Analysis of examination results.

3 #include <stdio.h>

4

5 // function main begins program execution

6 1int main(void)

7 {

8 // initialize variables in definitions

9 unsigned int passes = 0; // number of passes
10 unsigned int failures = 0; // number of failures
11 unsigned int student = 1; // student counter
12 int result; // one exam result

13

Fig. 3.10 | Analysis of examination results. (Part | of 2.)

92 Chapter 3 Structured Program Development in C
14 // process 10 students using counter-controlled loop
15 while (student <=) {
16
17 // prompt user for input and obtain value from user
18 printf(,)
19 scanf(, &result);
20
21 // if result 1, increment passes
22 if (result == 1) {
23 passes = passes + |;
24 } // end if
25 else { // otherwise, increment failures
26 failures = failures + 1;
27 } // end else
28
29 student = student + 1; // increment student counter
30 } // end while
31
32 // termination phase; display number of passes and failures
33 printf(, passes);
34 printf(, failures);
35
36 // if more than eight students passed, print "Bonus to instructor!"
37 if (passes >) {
38 puts(s
39 } // end if

40 } // end function main

Enter
Enter
Enter
Enter
Enter
Enter
Enter
Enter
Enter
Enter

Result (1=pass,2=fail):
Result (1=pass,2=fail):
Result (1=pass,2=fail):
Result (1l=pass,2=fail):
Result (1=pass,2=fail):
Result (1=pass,2=fail):
Result (1=pass,2=fail):
Result (1=pass,2=fail):
Result (1=pass,2=fail):
Result (1l=pass,2=fail):

NHHNRMRRNN -

Passed 6
Failed 4

Enter
Enter
Enter
Enter
Enter
Enter
Enter
Enter
Enter
Enter

Result (1=pass,2=fail):
Result (1=pass,2=fail):
Result (1=pass,2=fail):
Result (1=pass,2=fail):
Result (1=pass,2=fail):
Result (1l=pass,2=fail):
Result (1=pass,2=fail):
Result (1=pass,2=fail):
Result (1=pass,2=fail):
Result (1=pass,2=fail):

e N

Passed 9
Failed 1
Bonus to instructor!

Fig. 3.10 | Analysis of examination results. (Part 2 of 2.)

3.11 Assignment Operators 93

3.11 Assignment Operators

C provides several assignment operators for abbreviating assignment expressions. For ex-
ample, the statement

c=c+ 3
can be abbreviated with the addition assignment operator += as
C+= 1

The += operator adds the value of the expression on the right of the operator to the value
of the variable on the /eff of the operator and stores the result in the variable on the /eff of
the operator. Any statement of the form

variable = variable operator expression;

where operator is one of the binary operators +, -, *, / or % (or others we’ll discuss in
Chapter 10), can be written in the form

variable operator= expression;

Thus the assignment ¢ += 3 adds 3 to c. Figure 3.11 shows the arithmetic assignment
operators, sample expressions using these operators and explanations.

Assignment operator Sample expression Explanation Assigns

e C += C=2cC+ 10 to c
-= d -= d=d - ltod
= e *= e=4¢e* 20to e
/= f /= f=Ff/ 2tof
%= g %= g=9% 3tog

Fig. 3.11 | Arithmetic assignment operators.

3.12 Increment and Decrement Operators

C also provides the unary increment operator, ++, and the unary decrement operator, --,
which are summarized in Fig. 3.12. If a variable c is to be incremented by 1, the increment
operator ++ can be used rather than the expressions ¢ = ¢ + 1 or ¢ += 1. If increment or dec-
. .) .
rement operators are placed before a variable (i.e., prefixed), they’re referred to as the prein-
crement or predecrement operators, respectively. If increment or decrement operators are
. . , .
placed affer a variable (i.e., postfixed), they’re referred to as the postincrement or postdec-
rement operators, respectively. Preincrementing (predecrementing) a variable causes the
variable to be incremented (decremented) by 1, then its new value is used in the expression
in which it appears. Postincrementing (postdecrementing) the variable causes the current
value of the variable to be used in the expression in which it appears, then the variable value
is incremented (decremented) by 1.

94 Chapter 3 Structured Program Development in C

Operator Sample expression Explanation

++ ++a Increment a by 1, then use the new value of
a in the expression in which a resides.

++ a++ Use the current value of a in the expression
in which a resides, then increment a by 1.

-- --b Decrement b by 1, then use the new value
of b in the expression in which b resides.

-- b-- Use the current value of b in the expression
in which b resides, then decrement b by 1.

Fig. 3.12 | Increment and decrement operators

Figure 3.13 demonstrates the difference between the preincrementing and the postin-
crementing versions of the ++ operator. Postincrementing the variable ¢ causes it to be
incremented affer it’s used in the printf statement. Preincrementing the variable c causes
it to be incremented before it’s used in the printf statement.

1 // Fig. 3.13: fig03_13.c

2 // Preincrementing and postincrementing.

3 #include <stdio.h>

4

5 // function main begins program execution

6 1int main(void)

7 {

8 int c; // define variable

9

10 // demonstrate postincrement

11 c=25; // assign 5 to c

12 printf(, C); // print 5

13 printf(, C++); // print 5 then postincrement
14 printf(, C); // print 6

15

16 // demonstrate preincrement

17 c=25; // assign 5 to c

18 printf(, C); // print 5

19 printf(, ++C); // preincrement then print 6
20 printf(, C); // print 6

21 } // end function main

(%}

[o) o)V, |

Fig. 3.13 | Preincrementing and postincrementing.

3.12 Increment and Decrement Operators 95

The program displays the value of ¢ before and after the ++ operator is used. The dec-
rement operator (--) works similarly.

a7+ Good Programming Practice 3.5
(2%

Unary operators should be placed directly next to their operands with no intervening spaces.

The three assignment statements in Fig. 3.10

passes = passes + ;
failures = failures + 1;
student = student + 1;

can be written more concisely with assignment operators as

passes += |;
failures += 1;
student += 1;

with preincrement operators as

++passes;
++failures;
++student;

or with postincrement operators as

passes++;
failures++;
student++;

I¢’s important to note here that when incrementing or decrementing a variable in a
statement by izself, the preincrement and postincrement forms have the same effect. Ic’s
only when a variable appears in the context of a larger expression that preincrementing and
postincrementing have different effects (and similarly for predecrementing and post-
decrementing). Of the expressions we've studied thus far, only a simple variable name may
be used as the operand of an increment or decrement operator.

Common Programming Error 3.8

g% Attempting to use the increment or decrement operator on an expression other than a sim-

U ple variable name is a syntax error, e.g., writing ++(x + 1).

Error-Prevention Tip 3.4
C generally does not specify the order in which an operator’s operands will be evaluated
(although we'll see exceptions to this for a few operators in Chapter 4). Therefore you
should use increment or decrement operators only in statements in which one variable is
incremented or decremented by isself.

Figure 3.14 lists the precedence and associativity of the operators introduced to this
point. The operators are shown top to bottom in decreasing order of precedence. The
second column indicates the associativity of the operators at each level of precedence.
Notice that the conditional operator (?:), the unary operators increment (++), decrement
(--), plus (+), minus (-) and casts, and the assignment operators =, +=, -=, *=, /= and %=
associate from right to left. The third column names the various groups of operators. All
other operators in Fig. 3.14 associate from left to right.

96 Chapter 3 Structured Program Development in C

Operators Associativity Type

++ (postfix) -~ (postfix) right to left postfix

+ - (gpe) ++ (prefix) -- (prefix) right to left unary
/% left to right multiplicative
+ - left to right additive

< <= > >= left to right relational

= = left to right equality

78 right to left conditional

= = -= *= /= %= right to left assignment

Fig. 3.14 | Precedence and associativity of the operators encountered so far in the text.

3.13 Secure C Programming

Arithmetic Overflow
Figure 2.5 presented an addition program which calculated the sum of two int values (line
18) with the statement

sum = integerl + integer2; // assign total to sum

Even this simple statement has a potential problem—adding the integers could result in a
value that’s z00 large to store in an int variable. This is known as arithmetic overflow and
can cause undefined behavior, possibly leaving a system open to attack.

The maximum and minimum values that can be stored in an int variable are repre-
sented by the constants INT_MAX and INT_MIN, respectively, which are defined in the header
<limits.h>. There are similar constants for the other integral types that we’ll be introducing
in Chapter 4. You can see your platform’s values for these constants by opening the header
<1imits.h> in a text editor.

If’s considered a good practice to ensure that before you perform arithmetic calcula-
tions like the one in line 18 of Fig. 2.5, they will not overflow. The code for doing this is
shown on the CERT website www.securecoding.cert.org—ijust search for guideline
“INT32-C.” The code uses the && (logical AND) and | | (logical OR) operators, which are
introduced in the Chapter 4. In industrial-strength code, you should perform checks like
these for 4/l calculations. In later chapters, we’ll show other programming techniques for
handling such errors.

Unsigned Integers
In Fig. 3.6, line 8 declared as an unsigned int the variable counter because it’s used to
count only non-negative values. In general, counters that should store only non-negative
values should be declared with unsigned before the integer type. Variables of unsigned
types can represent values from 0 to approximately twice the positive range of the corre-
sponding signed integer types. You can determine your platform’s maximum unsigned
int value with the constant UINT_MAX from <1imits.h>.

The class-averaging program in Fig. 3.6 could have declared as unsigned int the vari-
ables grade, total and average. Grades are normally values from 0 to 100, so the total

www.securecoding.cert.org%E2%80%94just

3.13 Secure C Programming 97

and average should each be greater than or equal to 0. We declared those variables as ints
because we can’t control what the user actually enters—the user could enter nregative
values. Worse yet, the user could enter a value that’s not even a number. (We’'ll show how
to deal with such inputs later in the book.)

Sometimes sentinel-controlled loops use invalid values to terminate a loop. For
example, the class-averaging program of Fig. 3.8 terminates the loop when the user enters
the sentinel -1 (an invalid grade), so it would be improper to declare variable grade as an
unsigned int. As you'll see, the end-of-file (EOF) indicator—which is introduced in the
next chapter and is often used to terminate sentinel-controlled loops—is also a negative
number. For more information, see Chapter 5, “Integer Security” of Robert Seacord’s

book Secure Coding in C and C+ +.

scanf_s and printf_s

The C11 standard’s Annex K introduces more secure versions of printf and scanf called
printf_s and scanf_s. Annex K is designated as optional, so not every C vendor will im-
plement it.

Microsoft implemented its own versions of printf_s and scanf_s prior to the pub-
lication of the C11 standard and immediately began issuing warnings for every scanf call.
The warnings say that scanf is deprecated—it should no longer be used—and that you
should consider using scanf_s instead.

Many organizations have coding standards that require code to compile without
warning messages. There are two ways to eliminate Visual C++’s scanf warnings—you can
use scanf_s instead of scanf or you can disable these warnings. For the input statements
we've used so far, Visual C++ users can simply replace scanf with scanf_s. You can dis-
able the warning messages in Visual C++ as follows:

1. Type Alt F7 to display the Property Pages dialog for your project.

2. In the left column, expand Configuration Properties > C/C++ and select Preprocessor.

3. In the right column, at the end of the value for Preprocessor Definitions, insert
;_CRT_SECURE_NO_WARNINGS

4. Click OK to save the changes.

You’ll no longer receive warnings on scanf (or any other functions that Microsoft has dep-
recated for similar reasons). For industrial-strength coding, disabling the warnings is dis-
couraged. We'll say more about how to use scanf_s and printf_s in a later Secure C
Coding Guidelines section.

Summary

Section 3.1 Introduction
* Before writing a program to solve a particular problem, you must have a thorough understanding
of the problem and a carefully planned approach to solving the problem.

Section 3.2 Algorithms

* The solution to any computing problem involves executing a series of actions in a specific order.

98 Chapter 3 Structured Program Development in C

A procedure for solving a problem in terms of the actions to be executed, and the order in which
these actions are to be executed, is called an algorithm.

The order in which actions are to be executed is important.

Section 3.3 Pseudocode

Pseudocode is an artificial and informal language that helps you develop algorithms.
Pseudocode is similar to everyday English; it’s not an actual computer programming language.
Pseudocode programs help you “think out” a program.

Pseudocode consists purely of characters; you may type pseudocode using an editor.

Carefully prepared pseudocode programs may be converted easily to corresponding C programs.

Pseudocode consists only of action statements.

Section 3.4 Control Structures

Normally, statements in a program execute one after the other in the order in which they’re writ-
ten. This is called sequential execution.

Various C statements enable you to specify that the next statement to execute may be other than
the next one in sequence. This is called transfer of control.

Structured programming has become almost synonymous with “goto elimination.”
Structured programs are clearer, easier to debug and modify and more likely to be bug free.
All programs can be written in terms of sequence, selection and repetition control structures.
Unless directed otherwise, the computer automatically executes C statements in sequence.

A flowchart is a graphical representation of an algorithm. Flowcharts are drawn using rectangles,
diamonds, rounded rectangles and small circles, connected by arrows called flowlines.

The rectangle (action) symbol indicates any type of action including a calculation or an input/
output operation.

Flowlines indicate the order in which the actions are performed.

When drawing a flowchart that represents a complete algorithm, a rounded rectangle containing
the word “Begin” is the first symbol used; a rounded rectangle symbol containing the word
“End” is the last symbol used. When drawing only a portion of an algorithm, we omit the round-
ed rectangle symbols in favor of using small circle symbols, also called connector symbols.

The diamond (decision) symbol indicates that a decision is to be made.

The if selection statement either performs (selects) an action if a condition is true or skips the
action if the condition is false. The if...else selection statement performs an action if a condi-
tion is true and performs a different action if the condition is false. The switch selection state-
ment performs one of many different actions depending on the value of an expression.

The 1 f statement is called a single-selection statement because it selects or ignores a single action.
The if...else statement is called a double-selection statement because it selects between two dif-
ferent actions.

The switch statement is called a multiple-selection statement because it selects among many dif-
ferent actions.

C provides three types of repetition statements (also called iteration statements), namely whiTe,
do...while and for.

Control-statement flowchart segments can be attached to one another with control-statement
stacking—connecting the exit point of one control statement to the entry point of the next.

There’s only one other way control statements may be connected—control-statement nesting.

Summary 99

Section 3.5 The if Selection Statement

¢ Selection structures are used to choose among alternative courses of action.

¢ The decision symbol contains an expression, such as a condition, that can be either true or false.
The decision symbol has two flowlines emerging from it. One indicates the direction to be taken
when the expression is true; the other indicates the direction when the expression is false.

* A decision can be based on any expression—if the expression evaluates to zero, it’s treated as false,
and if it evaluates to nonzero, it’s treated as true.

¢ The if statement is a single-entry/single-exit structure.

Section 3.6 The if...else Selection Statement
* C provides the conditional operator (?:) which is closely related to the if...else statement.

¢ The conditional operator is C’s only ternary operator—it takes three operands. The first operand
is a condition. The second operand is the value for the conditional expression if the condition is
true, and the third operand is the value for the conditional expression if the condition is false.

¢ The values in a conditional expression can also be actions to execute.

e Nested if...else statements test for multiple cases by placing if...else statements inside
if...else statements.

* The if selection statement expects only one statement in its body. To include several statements
in the body of an i f, you must enclose the set of statements in braces ({ and }).

* A set of statements contained within a pair of braces is called a compound statement or a block.

* A syntax error is caught by the compiler. A logic error has its effect at execution time. A fatal logic
error causes a program to fail and terminate prematurely. A nonfatal logic error allows a program
to continue executing but to produce incorrect results.

Section 3.7 The while Repetition Statement

* Thewhile repetition statement specifies that an action is to be repeated while a condition is true.
Eventually, the condition will become false. At this point, the repetition terminates, and the first
statement after the repetition statement executes.

Section 3.8 Formulatmg Algorzt/ams Case Study 1: Counter-Controlled Repetztzon
* Counter-controlled repetition uses a variable called a counter to specify the number of times a
set of statements should execute.

* Counter-controlled repetition is often called definite repetition because the number of repeti-
tions is known before the loop begins executing.

* A total is a variable used to accumulate the sum of a series of values. Variables used to store totals
should normally be initialized to zero before being used in a program; otherwise the sum would
include the previous value stored in the total’s memory location.

* A counter is a variable used to count. Counter variables are normally initialized to zero or one,
depending on their use.

* An uninitialized variable contains a “garbage” value—the value last stored in the memory loca-
tion reserved for that variable.

Section 3.9 Formulating Algorithms with Top-Down, Stepwise Refinement Case

Study 2: Sentinel-Controlled Repetition

* A sentinel value (also called a signal value, a dummy value, or a flag value) is used in a sentinel-
controlled loop to indicate the “end of data entry.”

100 Chapter 3 Structured Program Development in C

Sentinel-controlled repetition is often called indefinite repetition because the number of repeti-
tions is not known before the loop begins executing.

The sentinel value must be chosen so that it cannot be confused with an acceptable input value.

In top-down, stepwise refinement, the top is a statement that conveys the program’s overall func-
tion. It’s a complete representation of a program. In the refinement process, we divide the top
into smaller tasks and list these in execution order.

The type float represents numbers with decimal points (called floating-point numbers).
When two integers are divided any fractional part of the result is truncated.

To produce a floating-point calculation with integer values, you must cast the integers to float-
ing-point numbers. C provides the unary cast operator (float) to accomplish this task.

Cast operators perform explicit conversions.

Most computers can evaluate arithmetic expressions only in which the operands’ data types are
identical. To ensure this, the compiler performs an operation called implicit conversion on se-
lected operands.

Cast operators are available for most data types. A cast operator is formed by placing parentheses
around a type name. The cast operator is a unary operator—it takes only one operand.

Cast operators associate from right to left and have the same precedence as other unary operators
such as unary + and unary -. This precedence is one level higher than that of *, / and %.

The printf conversion specifier %. 2f specifies that a floating-point value will be displayed with
two digits to the right of the decimal point. If the %f conversion specifier is used (without spec-
ifying the precision), the default precision of 6 is used.

When floating-point values are printed with precision, the printed value is rounded to the indi-
cated number of decimal positions for display purposes.

Section 3.11 Assignment Operators

C provides several assignment operators for abbreviating assignment expressions.

The += operator adds the value of the expression on the right of the operator to the value of the
variable on the left of the operator and stores the result in the variable on the left of the operator.

Any statement of the form

variable = variable operator expression;

where operaror is one of the binary operators +, -, *, / or % (or others we’ll discuss in Chapter 10),
can be written in the form

variable operator= expression;

Section 3.12 Increment and Decrement Operators

C provides the unary increment operator, ++, and the unary decrement operator, --.

If increment or decrement operators are placed before a variable, they’re referred to as the prein-
crement or predecrement operators, respectively. If increment or decrement operators are placed
after a variable, they’re referred to as the postincrement or postdecrement operators, respectively.

Preincrementing (predecrementing) a variable causes it to be incremented (decremented) by 1,
then the new value of the variable is used in the expression in which it appears.
Postincrementing (postdecrementing) a variable uses the current value of the variable in the ex-
pression in which it appears, then the variable value is incremented (decremented) by 1.

When incrementing or decrementing a variable in a statement by itself, the preincrement and
postincrement forms have the same effect. When a variable appears in the context of a larger ex-

Terminology 101

pression, preincrementing and postincrementing have different effects (and similarly for predec-
rementing and postdecrementing).

Section 3.13 Secure C Programming

Adding integers can result in a value that’s too large to store in an int variable. This is known as
arithmetic overflow and can cause unpredictable runtime behavior, possibly leaving a system
open to attack.

The maximum and minimum values that can be stored in an int variable are represented by the
constants INT_MAX and INT_MIN, respectively, from the header <1imits.h>.

It’s considered a good practice to ensure that arithmetic calculations will not overflow before you
perform the calculation. In industrial-strength code, you should perform checks for all calcula-
tions that can result on overflow or underflow.

In general, any integer variable that should store only non-negative values should be declared
with unsigned before the integer type. Variables of unsigned types can represent values from 0
to approximately double the positive range of the corresponding signed integer type.

You can determine your platform’s maximum unsigned int value with the constant UINT_MAX
from <limits.h>.

The C11 standard’s Annex K introduces more secure versions of printf and scanf called
printf_s and scanf_s. Annex K is designated as optional, so not every C compiler vendor will
implement it.

Microsoft implemented its own versions of printf_s and scanf_s prior to the C11 standard’s pub-
lication and immediately began issuing warnings for every scanf call. The warnings say that scanf
is deprecated—it should no longer be used—and that you should consider using scanf_s instead.

Many organizations have coding standards that require code to compile without warning mes-
sages. There are two ways to eliminate Visual C++’s scanf warnings. You can either start using
scanf_s immediately or disable this warning message.

Terminology

?: conditional operator 76 conditional operator (?:) 76
* multiplication operator 88 connector symbol 73

*= multiplication assignment operator 93 control-statement stacking 74
/= division assignment operator 93 control structure 72

% remainder operator 88 counter 80

%= remainder assignment operator 93 counter-controlled repetition 80
%u conversion specifier 90 decision symbol 73

-- decrement operator 94 default precision 88

++ increment operator 93 definite repetition 81

+= addition assignment operator 93 diamond symbol 73

-= subtraction assignment operator 93 double-selection statement 73
action 71 dummy value 83

action symbol 73 explicit conversion 87
addition assignment operator (+=) 93 fatal error 84

algorithm 71 first refinement 83

arithmetic overflow 96 flag value 83

block 78 float 85

cast operator 87 floating-point number 85
compound statement 78 flowchart 72

conditional expression 76 flowline 73

102 Chapter 3 Structured Program Development in C

“garbage value” 82

goto elimination 72

goto statement 72

implicit conversion 87
indefinite repetition 83

integer division 87

iteration statement 79
multiple-selection statement 73
multiplicative operator 88
nested statements 90

nested if...e1se statement 77
nesting statements 89

order 71

postdecrement operator (--) 93
postincrement operator (++) 93
precision 88

predecrement operator (--) 93
preincrement operator(++) 93
procedure 71

program control 71
pseudocode 71

rectangle symbol 73

repetition statement 79
repetition structure 72
rounded 88

rounded rectangle symbol 73
second refinement 83
selection structure 72
sentinel value 83

sequence structure 72
sequential execution 72
signal value 83
single-selection statement 73
single-entry/single-exit control statement 74
small circle symbols 73

top 83

top-down, stepwise refinement 83
total 82

transfer of control 72
truncated 87

unary operator 88

while repetition statement 79
white-space character 74

Self-Review Exercises

3.1 Fill in the blanks in each of the following questions.

a) A procedure for solving a problem in terms of the actions to be executed and the order
in which the actions should be executed is called a(n)

b) Specifying the execution order of statements by the computer is called

¢) All programs can be written in terms of three types of control statements: ,

and

d) The selection statement is used to execute one action when a condition is true
and another action when that condition is false.

e) Several statements grouped together in braces ({ and }) are called a(n)

f) The repetition statement specifies that a statement or group of statements is
to be executed repeatedly while some condition remains true.

g) Repetition of a set of instructions a specific number of times is called repetition.

h) When it’s not known in advance how many times a set of statements will be repeated,
a(n) value can be used to terminate the repetition.

3.2 Write four different C statements that each add 1 to integer variable x.

3.3 Write a single C statement to accomplish each of the following:

a) Multiply the variable product by 2 using the *= operator.

b) Multiply the variable product by 2 using the = and * operators.

c) Testif the value of the variable count is greater than 10. If it is, print “Count is greater
than 10.”

d) Calculate the remainder after q is divided by divisor and assign the result to q. Write
this statement two different ways.

e) Print the value 123.4567 with two digits of precision. What value is printed?

f) Print the floating-point value 3.14159 with three digits to the right of the decimal point.
What value is printed?

3.4

3.5

crement statements. The loop should terminate when the value of x becomes 11.

3.6

3.7

power. The program should have a while repetition control statement.

3.8

3.9

which is supposed to calculate the sum of the integers from 100 down to 1?

Answers to Self-Review Exercises

3.1

pound statement or block. f) while. g) Counter-controlled or definite. h) Sentinel.

3.2

3.3

Werite a C statement to accomplish each of the following tasks.

Answers to Self-Review Exercises

a) Define variables sum and x to be of type int.

b) Set variable x to 1.
c) Set variable sum to 0.

d) Add variable x to variable sum and assign the result to variable sum.
e) Print "The sum is: " followed by the value of variable sum.

103

Combine the statements that you wrote in Exercise 3.4 into a program that calculates the
sum of the integers from 1 to 10. Use the while statement to loop through the calculation and in-

Write single C statements that

a) Input unsigned integer variable x with scanf. Use the conversion specifier %u.
b) Input unsigned integer variable y with scanf. Use the conversion specifier %u.
¢) Set unsigned integer variable i to 1.

d) Set unsigned integer variable power to 1.

¢) Multiply unsigned integer variable power by x and assign the result to power.

f) Increment variable i by 1.

g) Test1 to see if it’s less than or equal to y in the condition of a while statement.

h) Output unsigned integer variable power with printf. Use the conversion specifier %u.

Werite a C program that uses the statements in Exercise 3.6 to calculate x raised to the y

Identify and correct the errors in each of the following:

a) while (¢ <=5) {
product *= c;
++C;

b) scanf(

c) if (gender == 1)

puts()5

else;
puts(Db

, &value);

What's wrong with the following while repetition statement (assume z has value 100),

while (z >=)
sum += z;

a) Algorithm. b) Program control. ¢) Sequence, selection, repetition. d) if...else. ¢) Com-

a) product *= 2;

b) product = product *

¢) if (count >)
puts(
d) q %= divisor;
g =q % divisor;

104 Chapter 3 Structured Program Development in C

e) printf(, D3
123.46 is displayed.
) printf(, Ve
3.142 is displayed.

3.4 a) int sum, x;

b) x = 1;

c) sum = 0;

d) sum += x; or sum = sum + x;

e) printf(, sum);
3.5 See below.
| // Calculate the sum of the integers from 1 to 10
2 #include <stdio.h>
3
4 int main(void)
5 {
6 unsigned int sum, x; // define variables sum and x
7 1
8 x = 1; // set x
9 sum = 0; // set sum
10
11 while (x <=) { // loop while x is Tess than or equal to 10
12 sum += x; // add x to sum
13 ++X; // increment x
14 } // end while
15
16 printf(, sum); // display sum

17 } // end main function

3.6 a) scanf(, &);
b) scanf(, &y);
¢ 1i=1;
d) power = 1;
e) power *= X;
f) ++i;
g) while (i <=y)
h) printf(, power);

w
~

See top of next page.

| // raise x to the y power

2 #include <stdio.h>

3

4 int main(void)

5 {

6 unsigned int x, y, i, power; // define variables
7

8 i=1; // set i

9 power = 1; // set power

10 printf(s);

11 scanf(, &); // read value for x from user
12 printf(s H

13 scanf(, &); // read value for y from user

Exercises 105

15 while (i <=y) { // loop while i is Tess than or equal to y
16 power *= x; // multiply power by x

17 ++i; // increment i

18 } // end while

19

20 printf(, power); // display power

21 } // end main function

3.8 a) Error: Missing the closing right brace of the while body.
Correction: Add closing right brace after the statement ++c;.
b) Error: Precision used in a scanf conversion specification.
Correction: Remove .4 from the conversion specification.
¢) Error: Semicolon after the else part of the if...e1se statement results in a logic error.
The second puts will always be executed.
Correction: Remove the semicolon after else.

3.9 The value of the variable z is never changed in the while statement. Therefore, an infinite
loop is created. To prevent the infinite loop, z must be decremented so that it eventually becomes 0.

Exercises

3.10 Identify and correct the errors in each of the following. [Note: There may be more than one
error in each piece of code.]
a) if (age >= DE:
puts(DE
else
puts()
b) int x = 1, total;

while (x <=) {
total += x;
X
}
c) While (x <=)
total += x;
+X;
d) while Cy > 0) {
printf(, Y)
++Y
}
3.11 Fill in the blanks in each of the following:
a) The solution to any problem involves performing a series of actions in a specific

b) A synonym for procedure is
c) A variable that accumulates the sum of several numbers is a(n)

d) A special value used to indicate “end of data entry” is called a(n) , a(n)
, a(n) or a(n) value.
e) A(n) is a graphical representation of an algorithm.

f) In a flowchart, the order in which the steps should be performed is indicated by
symbols.

106 Chapter 3 Structured Program Development in C
g) Rectangle symbols correspond to calculations that are normally performed by
statements and input/output operations that are normally performed by calls to the
and Standard Library functions.
h) The item written inside a decision symbol is called a(n) .
3.12 What does the following program print?
1 #include <stdio.h>
2
3 int main(void)
4 {
5 unsigned int x = 1, total = 0, y;
6
7 while (x <=) {
8 y = X ¥ X;
9 printf(Y)
10 total += vy;
11 ++X;
12 } // end while
13
14 printf(, total);

15 } // end main

3.13

3.14

3.15

Write a single pseudocode statement that indicates each of the following:

a)
b)
o)

d)

Display the message "Enter two numbers".

Assign the sum of variables x, y, and z to variable p.

The following condition is to be tested in an i f...e1se selection statement: The current
value of variable m is greater than twice the current value of variable v.

Obtain values for variables s, r, and t from the keyboard.

Formulate a pseudocode algorithm for each of the following:

a)
b)

<)

Obtain two numbers from the keyboard, compute their sum and display the resul.
Obtain two numbers from the keyboard, and determine and display which (if either) is
the larger of the two numbers.

Obtain a series of positive numbers from the keyboard, and determine and display their
sum. Assume that the user types the sentinel value -1 to indicate “end of data entry.”

State which of the following are #7ue and which are false. If a statement is false, explain why.

a)
b)
<)
d)

e)

Experience has shown that the most difficult part of solving a problem on a computer
is producing a working C program.

A sentinel value must be a value that cannot be confused with a legitimate data value.
Flowlines indicate the actions to be performed.

Conditions written inside decision symbols always contain arithmetic operators (i.e., +,
-, %, /,and %).

In top-down, stepwise refinement, each refinement is a complete representation of the
algorithm.

For Exercises 3.16-3.20, perform each of these steps:

I.
2
3.
4

. Test, debug and execute the C program.

3.16

Read the problem statement.

. Formulate the algorithm using pseudocode and top-down, stepwise refinement.

Werite a C program.

(Gas Mileage) Drivers are concerned with the mileage obtained by their automobiles. One
driver has kept track of several tankfuls of gasoline by recording miles driven and gallons used for

Exercises 107

each tankful. Develop a program that will input the miles driven and gallons used for each tankful.
The program should calculate and display the miles per gallon obtained for each tankful. After pro-
cessing all input information, the program should calculate and print the combined miles per gallon
obtained for all tankfuls. Here is a sample input/output dialog:

Enter the gallons used (-1 to end): 12.8
Enter the miles driven: 287
The miles/gallon for this tank was 22.421875

Enter the gallons used (-1 to end): 10.3
Enter the miles driven: 200

The miles/gallon for this tank was 19.417475
Enter the gallons used (-1 to end): 5

Enter the miles driven: 120

The miles/gallon for this tank was 24.000000
Enter the gallons used (-1 to end): -1

The overall average miles/gallon was 21.601423

3.17 (Credit Limit Calculator) Develop a C program that will determine if a department store
customer has exceeded the credit limit on a charge account. For each customer, the following facts
are available:

a) Account number

b) Balance at the beginning of the month

¢) Total of all items charged by this customer this month

d) Total of all credits applied to this customer's account this month

e) Allowed credit limit

The program should input each fact, calculate the new balance (= beginning balance +

charges — credits), and determine whether the new balance exceeds the customer's credit limit. For
those customers whose credit limit is exceeded, the program should display the customer's account
number, credit limit, new balance and the message “Credit limit exceeded.” Here is a sample
input/output dialog:

Enter account number (-1 to end): 100
Enter beginning balance: 5394.78
Enter total charges: 1000.00

Enter total credits: 500.00

Enter credit Timit: 5500.00

Account: 100
Credit Timit: 5500.00
Balance: 5894.78

Credit Limit Exceeded.

Enter account number (-1 to end): 200
Enter beginning balance: 1000.00
Enter total charges: 123.45

Enter total credits: 321.00

Enter credit Timit: 1500.00

Enter account number (-1 to end): 300
Enter beginning balance: 500.00
Enter total charges: 274.73

Enter total credits: 100.00

Enter credit Timit: 800.00

Enter account number (-1 to end): -1

108 Chapter 3 Structured Program Development in C

3.18 (Sales Commission Calculator) One large chemical company pays its salespeople on a com-
mission basis. The salespeople receive $200 per week plus 9% of their gross sales for that week. For
example, a salesperson who sells $5000 worth of chemicals in a week receives $200 plus 9% of
$5000, or a total of $650. Develop a program that will input each salesperson’s gross sales for last
week and will calculate and display that salesperson’s earnings. Process one salesperson's figures at a
time. Here is a sample input/output dialog:

Enter sales in dollars (-1 to end): 5000.00
Salary 1is: $650.00

Enter sales in dollars (-1 to end): 1234.56
Salary is: $311.11

Enter sales in dollars (-1 to end): -1

3.19 (Interest Calculator) The simple interest on a loan is calculated by the formula
interest = principal * rate * days / ;

The preceding formula assumes that rate is the annual interest rate, and therefore includes the
division by 365 (days). Develop a program that will input principal, rate and days for several
loans, and will calculate and display the simple interest for each loan, using the preceding formula.
Here is a sample input/output dialog:

Enter loan principal (-1 to end): 1000.00
Enter interest rate: .1

Enter term of the loan in days: 365

The interest charge is $100.00

Enter loan principal (-1 to end): 1000.00
Enter interest rate: .08375

Enter term of the loan in days: 224

The interest charge is $51.40

Enter loan principal (-1 to end): -1

3.20 (Salary Calculator) Develop a program that will determine the gross pay for each of several
employees. The company pays “straight time” for the first 40 hours worked by each employee and
pays “time-and-a-half” for all hours worked in excess of 40 hours. You're given a list of the employ-
ees of the company, the number of hours each employee worked last week and the hourly rate of
each employee. Your program should input this information for each employee and should deter-
mine and display the employee's gross pay. Here is a sample input/output dialog:

Enter # of hours worked (-1 to end): 39
Enter hourly rate of the worker ($00.00): 10.00
Salary is $390.00

Enter # of hours worked (-1 to end): 40
Enter hourly rate of the worker ($00.00): 10.00
Salary 1is $400.00

Enter # of hours worked (-1 to end): 41
Enter hourly rate of the worker ($00.00): 10.00
Salary is $415.00

Enter # of hours worked (-1 to end): -1

Exercises 109

3.21 (Predecrementing vs. Postdecrementing) Write a program that demonstrates the difference
between predecrementing and postdecrementing using the decrement operator --.

3.22 (Printing Numbers from a Loop) Write a program that utilizes looping to print the num-
bers from 1 to 10 side by side on the same line with three spaces between numbers.

3.23 (Find the Largest Number) The process of finding the largest number (i.e., the maximum
of a group of numbers) is used frequently in computer applications. For example, a program that
determines the winner of a sales contest would input the number of units sold by each salesperson.
The salesperson who sells the most units wins the contest. Write a pseudocode program and then a
program that inputs a series of 10 non-negative numbers and determines and prints the largest of
the numbers. Hinz: Your program should use three variables as follows:

counter: A counter to count to 10 (i.e., to keep track of how many numbers have
been input and to determine when all 10 numbers have been processed)

number: The current number input to the program

largest: The largest number found so far

3.24 (Tabular Output) Write a program that uses looping to print the following table of values.
Use the tab escape sequence, \t, in the printf statement to separate the columns with tabs.

N 10*N 100*N 1000*N
1 10 100 1000
2 20 200 2000
3 30 300 3000
4 40 400 4000
5 50 500 5000
6 60 600 6000
7 70 700 7000
8 80 800 8000
9 90 900 9000
10 100 1000 10000

3.25 (Tabular Outpur) Write a program that utilizes looping to produce the following table of

values:

A A+2 A+4 A+6
3 5 7 9

6 8 10 12
9 11 13 15
12 14 16 18
15 17 19 21

3.26 (Find the Two Largest Numbers) Using an approach similar to Exercise 3.23, find the two
largest values of the 10 numbers. [Noze: You may input each number only once.]

3.27 (Validating User Input) Modify the program in Figure 3.10 to validate its inputs. On any
input, if the value entered is other than 1 or 2, keep looping until the user enters a correct value.

3.28 What does the following program print?

#include <stdio.h>

1
2
3 int main(void)
4 {

110 Chapter 3 Structured Program Development in C

5 unsigned int count = 1; // initialize count
6

7 while (count <=) { // Toop 10 times

8

9 // output line of text

10 puts(count % ? :);
11 ++count; // increment coun

12 } // end while

13} // end function main

3.29 What does the following program print?

I #include <stdio.h>

2

3 int main(void)

4 {

5 unsigned int row = ; // initialize row

6 unsigned int column; // define column

7

8 while (row >=) { // loop until row < 1

9 column = 1; // set column to 1 as iteration begins
10

11 while (column <=) { // loop 10 times

12 printf(, row% 2 ? :); // output
13 ++column; // increment column

14 } // end inner while

15

16 --row; // decrement row

17 puts(); // begin new output line

18 } // end outer while

19 1} // end function main

3.30 (Dangling Else Problem) Determine the output for each of the following when x is 9 and y
is 11, and when x is 11 and y is 9. The compiler ignores the indentation in a C program. Also, the
compiler always associates an el1se with the previous if unless told to do otherwise by the placement
of braces {}. Because, on first glance, you may not be sure which 1 f an e1se matches, this is referred
to as the “dangling else” problem. We eliminated the indentation from the following code to make
the problem more challenging. [Hint: Apply indentation conventions you have learned.]
a) if (x <)

if Cy >)

puts();

else

puts()

puts();

b) if (x < {

if Cy >
puts();
}
else {
puts();
puts()
3

3.31 (Another Dangling Else Problem) Modify the following code to produce the output shown.
Use proper indentation techniques. You may not make any changes other than inserting braces. The

Exercises 111

compiler ignores the indentation in a program. We eliminated the indentation from the following
code to make the problem more challenging. [/Voze: It’s possible that no modification is necessary.]

if (y ==28)
if (x ==5)
puts(D
else
puts(D
puts(DE
puts()

a) Assuming x = 5 and y = 8, the following output is produced.

[cdede
$$5%9
8&&&&

b) Assuming x = 5 and y = 8, the following output is produced.

@@eea

¢) Assuming x = 5 and y = 8, the following output is produced.

@@eea
8&&&&

d) Assuming x = 5 and y = 7, the following output is produced. [Noze: The last three puts
statements are all part of a compound statement.]

#####
$$$8$
8&&&&

3.32 (Square of Asterisks) Write a program that reads in the side of a square and then prints that
square out of asterisks. Your program should work for squares of all side sizes between 1 and 20. For
example, if your program reads a size of 4, it should print

3.33 (Hollow Square of Asterisks) Modify the program you wrote in Exercise 3.32 so that it
prints a hollow square. For example, if your program reads a size of 5, it should print

112 Chapter 3 Structured Program Development in C

3.34 (Palindrome Tester) A palindrome is a number or a text phrase that reads the same back-
ward as forward. For example, each of the following five-digit integers is a palindrome: 12321,
55555, 45554 and 11611. Write a program that reads in a five-digit integer and determines whether
or not it’s a palindrome. [Hinz: Use the division and remainder operators to separate the number
into its individual digits.]

3.35 (Printing the Decimal Equivalent of a Binary Number) Input an integer (5 digits or fewer)
containing only Os and 1s (i.e., a “binary” integer) and print its decimal equivalent. [Hinz: Use the
remainder and division operators to pick off the “binary” number’s digits one at a time from right
to left. Just as in the decimal number system, in which the rightmost digit has a positional value of
1, and the next digit left has a positional value of 10, then 100, then 1000, and so on, in the binary
number system the rightmost digit has a positional value of 1, the next digit left has a positional
value of 2, then 4, then 8, and so on. Thus the decimal number 234 can be interpreted as 4 * 1 + 3
*10 + 2 *100. The decimal equivalent of binary 1101 is 1 *1+0*2+1*4+1*8o0r1+0+ 4
+8or13.]

3.36 (How Fast is Your Computer?) How can you determine how fast your own computer really
operates? Write a program with a while loop that counts from 1 to 1,000,000,000 by 1s. Every time
the count reaches a multiple of 100,000,000, print that number on the screen. Use your watch to
time how long each 100 million repetitions of the loop takes.

3.37 (Detecting Multiples of 10) Write a program that prints 100 asterisks, one at a time. After
every tenth asterisk, your program should print a newline character. [Hin#: Count from 1 to 100.
Use the remainder operator to recognize each time the counter reaches a multiple of 10.]

3.38 (Counting 7s) Write a program that reads an integer (5 digits or fewer) and determines and
prints how many digits in the integer are 7s.

3.39 (Checkerboard Pattern of Asterisks) Write a program that displays the following checker-
board pattern:

Your program must use only three output statements, one of each of the following forms:

printf(s E
printf(s E
puts(); // outputs a newline

3.40 (Multiples of 2 with an Infinite Loop) Write a program that keeps printing the multiples of
the integer 2, namely 2, 4, 8, 16, 32, 64, and so on. Your loop should not terminate (i.e., you should
create an infinite loop). What happens when you run this program?

3.41 (Diameter, Circumference and Area of a Cirle) Write a program that reads the radius of a
circle (as a float value) and computes and prints the diameter, the circumference and the area. Use
the value 3.14159 for T.

3.42 What's wrong with the following statement? Rewrite it to accomplish what the programmer
was probably trying to do.

printf(, (X +y));

Making a Difference 113

3.43 (Sides of a Triangle) Write a program that reads three nonzero integer values and deter-
mines and prints whether they could represent the sides of a triangle.

3.44 (Sides of a Right Triangle) Write a program that reads three nonzero integers and deter-
mines and prints whether they could be the sides of a right triangle.

3.45 (Factorial) The factorial of a nonnegative integer 7 is written 7! (pronounced “z factorial”)
and is defined as follows:
m=n-(m-1)-(n-2)-...-1 (for values of 7 greater than or equal to 1)
and
n'=1 (forn=0).
For example, 5! =5 -4 -3 .2 .1, which is 120.
a) Write a program that reads a nonnegative integer and computes and prints its factorial.
b) Write a program that estimates the value of the mathematical constant e by using the

formula:
1 1 1
e=1l+—+—+—+
1 2! 3!
¢) Write a program that computes the value of ¢* by using the formula
x x X %
e = Ll ®, o
12! 3!

Making a Difference

3.46 (World-Population-Growth Calculator) Use the web to determine the current world pop-
ulation and the annual world population growth rate. Write an application that inputs these values,
then displays the estimated world population after one, two, three, four and five years.

3.47 (Target-Heart-Rate Calculator) While exercising, you can use a heart-rate monitor to see
that your heart rate stays within a safe range suggested by your trainers and doctors. According to
the American Heart Association (AHA), the formula for calculating your maximum heart rate in
beats per minute is 220 minus your age in years. Your farget heart rate is a range that’s 50-85% of
your maximum heart rate. [Noze: These formulas are estimates provided by the AHA. Maximum
and target heart rates may vary based on the health, fitness and gender of the individual. Always con-
sult a physician or qualified health care professional before beginning or modifying an exercise program.]
Create a program that reads the user’s birthday and the current day (each consisting of the month,
day and year). Your program should calculate and display the person’s age (in years), the person’s
maximum heart rate and the person’s target-heart-rate range.

3.48 (Enforcing Privacy with Cryptography) The explosive growth of Internet communications
and data storage on Internet-connected computers has greatly increased privacy concerns. The field
of cryptography is concerned with coding data to make it difficult (and hopefully—with the most
advanced schemes—impossible) for unauthorized users to read. In this exercise you’ll investigate a
simple scheme for encrypting and decrypting data. A company that wants to send data over the In-
ternet has asked you to write a program that will encrypt it so that it may be transmitted more se-
curely. All the data is transmitted as four-digit integers. Your application should read a four-digit
integer entered by the user and encrypz it as follows: Replace each digit with the result of adding 7
to the digit and getting the remainder after dividing the new value by 10. Then swap the first digit
with the third, and swap the second digit with the fourth. Then print the encrypted integer. Write
a separate application that inputs an encrypted four-digit integer and decrypts it (by reversing the
encryption scheme) to form the original number. [Optional reading project: Research “public key
cryptography” in general and the PGP (Pretty Good Privacy) specific public key scheme. You may
also want to investigate the RSA scheme, which is widely used in industrial-strength applications.]

Who can control his fate?
—Wiilliam Shakespeare

The used key is always bright.

—Benjamin Franklin

Every advantage in the past is
judged in the light of the final
issue.

—Demosthenes

Objectives
In this chapter, you'll learn:

m The essentials of counter-
controlled repetition.

To use the for and

do...wh1iTe repetition
statements to execute
statements repeatedly.

To understand multiple
selection using the switch
selection statement.

To use the break and
continue statements to
alter the flow of control.

To use the logical operators
to form complex conditional
expressions in control
statements.

To avoid the consequences of
confusing the equality and
assignment operators.

C Program Control

4.1 Introduction 115

4.1 Introduction 4.8 do...whiTe Repetition Statement

4.2 Repetition Essentials 4.9 break and continue Statements

4.3 Counter-Controlled Repetition 4.10 Logical Operators

4.4 for Repetition Statement 4.11 Confusing Equality (==) and

4.5 for Statement: Notes and Assignment (=) Operators
Observations 4.12 Structured Programming Summary

4.6 Examples Using the for Statement 4.13 Secure C Programming
4.7 switch Multiple-Selection Statement

Summary | Terminology | Self-Review Exercises | Answers to Self-Review Exercises | Exercises
Making a Difference

4.1 Introduction

You should now be comfortable with writing simple, complete C programs. In this chap-
ter, repetition is considered in greater detail, and additional repetition control statements,
namely the for and the do...while, are presented. The switch multiple-selection state-
ment is introduced. We discuss the break statement for exiting immediately from certain
control statements, and the continue statement for skipping the remainder of the body of
a repetition statement and proceeding with the next iteration of the loop. The chapter dis-
cusses logical operators used for combining conditions, and summarizes the principles of
structured programming as presented in Chapters 3 and 4.

4.2 Repetition Essentials

Most programs involve repetition, or looping. A loop is a group of instructions the com-
puter executes repeatedly while some loop-continuation condition remains true. We've
discussed two means of repetition:

1. Counter-controlled repetition
2. Sentinel-controlled repetition

Counter-controlled repetition is sometimes called definite repetition because we know in
advance exactly how many times the loop will be executed. Sentinel-controlled repetition
is sometimes called indefinite repetition because it’s not known in advance how many times
the loop will be executed.

In counter-controlled repetition, a control variable is used to count the number of
repetitions. The control variable is incremented (usually by 1) each time the group of
instructions is performed. When the value of the control variable indicates that the correct
number of repetitions has been performed, the loop terminates and execution continues
with the statement after the repetition statement.

Sentinel values are used to control repetition when:

1. The precise number of repetitions isn’t known in advance, and
2. The loop includes statements that obtain data each time the loop is performed.

The sentinel value indicates “end of data.” The sentinel is entered after all regular data items
have been supplied to the program. Sentinels must be distinct from regular data items.

116 Chapter4 C Program Control

4.3 Counter-Controlled Repetition
Counter-controlled repetition requires:
1. The name of a control variable (or loop counter).
2. The initial value of the control variable.
3. The increment (or decrement) by which the control variable is modified each
time through the loop.
4. The condition that tests for the final value of the control variable (i.e., whether
looping should continue).
Consider the simple program shown in Fig. 4.1, which prints the numbers from 1 to
10. The definition

unsigned int counter = 1; // initialization

names the control variable (counter), defines it to be an integer, reserves memory space
for it, and sets it to an initial value of 1.

// Fig. 4.1: fig04_01l.c

1

2 // Counter-controlled repetition.

3 #include <stdio.h>

4

5 // function main begins program execution

6 1int main(void)

7 {

8 unsigned 1int counter = 1; // initialization
9

10 while (counter <=) { // repetition condition
11 printf (, counter); // display counter
12 ++counter; // increment

13 } // end while

14 } // end function main

1

2

3

4

5

6

7

8

9

10

Fig. 4.1 | Counter-controlled repetition.

The definition and initialization of counter could also have been written as

unsigned 1int counter;
counter = 1;

The definition is 7ot executable, but the assignment is. We use both methods of setting
the values of variables.

4.4 for Repetition Statement 117

The statement
++counter; // increment

increments the loop counter by 1 each time the loop is performed. The loop-continuation
condition in the while statement tests whether the value of the control variable is less than
or equal to 10 (the last value for which the condition is true). The body of this while is
performed even when the control variable is 10. The loop terminates when the control
variable exceeds 10 (i.e., counter becomes 11).

You could make the program in Fig. 4.1 more concise by initializing counter to 0 and
by replacing the while statement with

while (++counter <=)
printf(, counter);

This code saves a statement because the incrementing is done directly in the while condi-
tion before the condition is tested. Also, this code eliminates the need for the braces
around the body of the while because the while now contains only one statement. Coding
in such a condensed fashion takes some practice. Some programmers feel that this makes
the code too cryptic and error prone.

Common Programming Error 4.1
Floating-point values may be approximate, so controlling counting loops with floating-
point variables may result in imprecise counter values and inaccurate termination tests.

Control counting loops with integer values.

Good Programming Practice 4.1

Too many levels of nesting can make a program difficult to understand. As a rule, try to
avoid using more than three levels of nesting.

% Error-Prevention Tip 4.1

The combination of vertical spacing before and after control statements and indentation
of the bodlies of control statements within the control-statement headers gives programs a
two-dimensional appearance that greatly improves program readability.

W Good Programming Practice 4.2
(2%

4.4 for Repetition Statement

The for repetition statement handles all the details of counter-controlled repetition. To
illustrate its power, let’s rewrite the program of Fig. 4.1. The result is shown in Fig. 4.2.
The program operates as follows. When the for statement begins executing, the con-
trol variable counter is initialized to 1. Then, the loop-continuation condition counter <=
10 is checked. Because the initial value of counter is 1, the condition is satisfied, so the
printf statement (line 13) prints the value of counter, namely 1. The control variable
counter is then incremented by the expression ++counter, and the loop begins again with
the loop-continuation test. Because the control variable is now equal to 2, the final value is
not exceeded, so the program performs the printf statement again. This process continues
until the control variable counter is incremented to its final value of 11—this causes the

118 Chapter4 C Program Control

1 // Fig. 4.2: fig04_02.c

2 // Counter-controlled repetition with the for statement.
3 #include <stdio.h>

4

5 // function main begins program execution

6 1int main(void)

7 {

8 unsigned 1int counter; // define counter

9

10 // initialization, repetition condition, and increment
11 // are all included in the for statement header.

12 for (counter = !; counter <= ; ++counter) {

13 printf(, counter);

14 } // end for

15 1} // end function main

Fig. 4.2 | Counter-controlled repetition with the for statement.

loop-continuation test to fail, and repetition terminates. The program continues by per-
forming the first statement after the for statement (in this case, the end of the program).

for Statement Header Components
Figure 4.3 takes a closer look at the for statement of Fig. 4.2. Notice that the for state-
ment “does it all”—it specifies each of the items needed for counter-controlled repetition
with a control variable. If there’s more than one statement in the body of the for, braces
are required to define the body of the loop.

The C standard allows you to declare the control variable in the initialization section
of the for header (as in int counter = 1). We show a complete code example of this in
Appendix F. This feature is not supported in Microsoft Visual C++.

Control Required Final value of control Required
for variable semicolon variable for which semicolon
keyword name separator the condition is true separator
for (counter = 1; counter <= ; ++counter)
—
Initial value of T _ Increment of
control variable Loop-continuation control variable
condition

Fig. 4.3 | for statement header components.

Off-By-One Errors

Notice that Fig. 4.2 uses the loop-continuation condition counter <= 10. If you incorrect-
ly wrote counter < 10, then the loop would be executed only 9 times. This is a common
logic error called an off-by-one error.

4.4 for Repetition Statement 119

Using the final value in the condition of a while or for statement and using the <= re-
lational operator can help avoid off-by-one errors. For a loop used to print the values 1 to
10, for example, the loop-continuation condition should be counter <= 10 rather than
counter < 11 or counter < 10.

% Error-Prevention Tip 4.2

General Format of a for Statement
The general format of the for statement is

for (expressionl; expression2; expression3) {
statement

}

where expression] initializes the loop-control variable, expression2 is the loop-continuation
condition, and expression3 increments the control variable. In most cases, the for state-
ment can be represented with an equivalent while statement as follows:

expressionl ;

while (expression2) {
statement
expression3;

There’s an exception to this rule, which we discuss in Section 4.9.

Comma-Separated Lists of Expressions

Often, expression] and expression3 are comma-separated lists of expressions. The commas
as used here are actually comma operators that guarantee that lists of expressions evaluate
from left to right. The value and type of a comma-separated list of expressions are the value
and type of the rightmost expression in the list. The comma operator is most often used
in the for statement. Its primary use is to enable you to use multiple initialization and/or
multiple increment expressions. For example, there may be two control variables in a sin-
gle for statement that must be initialized and incremented.

Software Engineering Observation 4.1

Place only expressions involving the control variables in the initialization and increment
=) sections of a for statement. Manipulations of other variables should appear either before
the loop (if they execute only once, like initialization statements) or in the loop body (if
they execute once per repetition, like incrementing or decrementing statements).

Expressions in the for Statement’s Header Are Optional

The three expressions in the for statement are optional. If expression2 is omitted, C assumes
that the condition is #7ue, thus creating an infinite loop. You may omit expressionl if the con-
trol variable is initialized elsewhere in the program. expression3 may be omitted if the in-
crement is calculated by statements in the body of the for statement or if no increment is
needed.

Increment Expression Acts Like a Standalone Statement
The increment expression in the for statement acts like a stand-alone C statement at the
end of the body of the for. Therefore, the expressions

120

are all equivalent in the increment part of the for statement. Some C programmers prefer
the form counter++ because the incrementing occurs affer the loop body is executed, and
the postincrementing form seems more natural. Because the variable being preincrement-
ed or postincremented here does 7o appear in a larger expression, both forms of incre-

Chapter4 C Program Control

counter = counter +
counter +=
++counter
counter++

menting have the same effect. The two semicolons in the for statement are required.

Using commas instead of semicolons in a for header is a syntax error.

: Common Programming Error 4.2
;E

— Common Programming Error 4.3
g% Placing a semicolon immediately to the right of a for header makes the body of that for

statement an empty statement. This is normally a logic error.

4.5 for Statement: Notes and Observations

1. The initialization, loop-continuation condition and increment can contain arith-

metic expressions. For example, if x = 2 and y = 10, the statement
for (j=x;j<=4%x*y; j+=Yy/Xx)
is equivalent to the statement

for (j =2; j <=280; j +=5)

2. The “increment” may be negative (in which case it’s really a decrement and the

loop actually counts downward).

3. If the loop-continuation condition is initially false, the loop body does noz exe-
cute. Instead, execution proceeds with the statement following the for statement.

4. The control variable is frequently printed or used in calculations in the body of a
loop, but it need not be. It’'s common to use the control variable for controlling

repetition while never mentioning it in the body of the loop.

5. The for statement is flowcharted much like the while statement. For example,

Fig. 4.4 shows the flowchart of the for statement

for (counter = !; counter <= ; ++counter)
printf(, counter);

This flowchart makes it clear that the initialization occurs only once and that in-

crementing occurs affer the body statement is performed.

Error-Prevention Tip 4.3
Although the value of the control variable can be changed in the body of a for loop, this
can lead to subtle errors. It’s best not to change it.

4.6 Examples Using the for Statement 121

Establish initial
value of control
variable \
counter = 1

I

true
counter <= 10 —» printf("%u'", counter); —® ++counter

S

7 Body of loop Increment
Determine if final lfa|se (this may be many the control
value of control statements) variable

variable has been
reached

Fig. 4.4 | Flowcharting a typical for repetition statement.

4.6 Examples Using the for Statement
The following examples show methods of varying the control variable in a for statement.
1. Vary the control variable from 1 to 100 in increments of 1.
for (i =1; i <= ;1)
2. Vary the control variable from 100 to 1 in increments of -1 (decrements of 1).
for (i = ;1 o>= 15 --1)
3. Vary the control variable from 7 to 77 in steps of 7.
for (i =7; 1<=77; 1 4=7)
4. Vary the control variable from 20 to 2 in steps of -2.
for (i =20; i>=2;1-=2)
5. Vary the control variable over the following sequence of values: 2, 5, 8, 11, 14, 17.
for (j =253 <=17; 3 +=3)
6. Vary the control variable over the following sequence of values: 44, 33, 22, 11, 0.
for (J=44; 3 >=053-=11)
Application: Summing the Even Integers from 2 to 100

Figure 4.5 uses the for statement to sum all the even integers from 2 to 100. Each iteration
of the loop (lines 11-13) adds control variable number’s value to variable sum.

1 // Fig. 4.5: fig04_05.c
2 // Summation with for.

3 #include <stdio.h>
4

Fig. 4.5 | Summation with for. (Part | of 2.)

122 Chapter4 C Program Control

5 // function main begins program execution

6 int main(void)

7 {

8 unsigned int sum = 0; // initialize sum

9 unsigned 1int number; // number to be added to sum
10

11 for (number = 2; number <= ; number += 2) {
12 sum += number; // add number to sum

13 } // end for

14

15 printf(, sum); // output sum

16 } // end function main

Sum is 2550

Fig. 4.5 | Summation with for. (Part 2 of 2.)
The body of the for statement in Fig. 4.5 could actually be merged into the rightmost
portion of the for header by using the comma operator as follows:

for (number = Z; number <= ; sum += number, number += 2)
; // empty statement

The initialization sum = 0 could also be merged into the initialization section of the for.

Although statements preceding a for and statements in the body of a for can ofien be
merged into the for header, avoid doing so, because it makes the program more difficult
to read.

:«% ET Good Programming Practice 4.3

Limit the size of control-statement headers to a single line if possible.

ﬂ} ? Good Programming Practice 4.4

Application: Compound-Interest Calculations
The next example computes compound interest using the for statement. Consider the fol-
lowing problem statement:

A person invests $1000.00 in a savings account yielding 5% interest. Asmming that
all interest is left on deposit in the account, calculate and print the amount of money
in the account at the end of each year for 10 years. Use the following formula for
determining these amounts:

a=p(l+r)

where
p is the original amount invested (i.e., the principal)
7 is the annual interest rate

n is the number of years
a is the amount on deposit at the end of the " year.

This problem involves a loop that performs the indicated calculation for each of the
10 years the money remains on deposit. The solution is shown in Fig. 4.6.

4.6 Examples Using the for Statement 123

1 // Fig. 4.6: fig04_06.c
2 // Calculating compound interest.
3 #include <stdio.h>
4 #include <math.h>
5
6 // function main begins program execution
7 int main(void)
8 {
9 double amount; // amount on deposit
10 double principal = ; // starting principal
11 double rate = ; // annual 1interest rate
12 unsigned 1int year; // year counter
13
14 // output table column heads
15 printf(s ,)
16
17 // calculate amount on deposit for each of ten years
18 for (year = 1; year <= ; ++year) {
19
20 // calculate new amount for specified year
21 amount = principal * pow(+ rate, year);
22
23 // output one table row
24 printf(, year, amount);
25 } // end for
26 1} // end function main
Year Amount on deposit
1 1050.00
2 1102.50
3 1157.63
4 1215.51
5 1276.28
6 1340.10
7 1407.10
8 1477 .46
9 1551.33
10 1628.89

Fig. 4.6 | Calculating compound interest.

The for statement executes the body of the loop 10 times, varying a control variable
from 1 to 10 in increments of 1. Although C does 7oz include an exponentiation operator,
we can use the Standard Library function pow for this purpose. The function pow(x, y)
calculates the value of x raised to the yth power. It takes two arguments of type double
and returns a double value. Type doube is a floating-point type like float, but typically
a variable of type double can store a value of much greater magnitude with greater precision
than float. The header <math.h> (line 4) should be included whenever a math function
such as pow is used. Actually, this program would malfunction without the inclusion of
math.h, as the linker would be unable to find the pow function.! Function pow requires

1. On many Linux/UNIX C compilers, you must include the -1m option (e.g., gcc -1m fig04_06.c)
when compiling Fig. 4.6. This links the math library to the program.

124 Chapter4 C Program Control

two double arguments, but variable year is an integer. The math. h file includes informa-
tion that tells the compiler to convert the value of year to a temporary double represen-
tation before calling the function. This information is contained in something called pow’s
function prototype. Function prototypes are explained in Chapter 5. We also provide a
summary of the pow function and other math library functions in Chapter 5.

A Caution about Using Type float or double for Monetary Amounts
Notice that we defined the variables amount, principal and rate to be of type double.
We did this for simplicity because we’re dealing with fractional parts of dollars.

Error-Prevention Tip 4.4

% Do not use variables of type float or doubTe to perform monetary calculations. The im-
preciseness of floating-point numbers can cause errors that will result in incorrect mone-
tary values. [In this chapter’s exercises, we explore the use of integers to perform precise
monetary calculations.]

Here is a simple explanation of what can go wrong when using float or double to
represent dollar amounts. Two float dollar amounts stored in the machine could be
14.234 (which with %.2f prints as 14.23) and 18.673 (which with %. 2f prints as 18.67).
When these amounts are added, they produce the sum 32.907, which with %. 2f prints as
32.91. Thus your printout could appear as

14.23
+ 18.67

32.91

Clearly the sum of the individual numbers as printed should be 32.90! You've been
warned!

Formatting Numeric Output

The conversion specifier %21. 2f is used to print the value of the variable amount in the pro-
gram. The 21 in the conversion specifier denotes the field width in which the value will be
printed. A field width of 21 specifies that the value printed will appear in 21 print positions.
The 2 specifies the precision (i.c., the number of decimal positions). If the number of char-
acters displayed is less zhan the field width, then the value will automatically be right justified
in the field. This is particularly useful for aligning floating-point values with the same pre-
cision (so that their decimal points align vertically). To leff justify a value in a field, place a
- (minus sign) between the % and the field width. The minus sign may also be used to left
justify integers (such as in %-6d) and character strings (such as in %-8s). We'll discuss the
powerful formatting capabilities of printf and scanf in detail in Chapter 9.

4.7 switch Multiple-Selection Statement

In Chapter 3, we discussed the if single-selection statement and the if...e1se double-
selection statement. Occasionally, an algorithm will contain a series of decisions in which a
variable or expression is tested separately for each of the constant integral values it may as-
sume, and different actions are taken. This is called multiple selection. C provides the
switch multiple-selection statement to handle such decision making.

4.7 switch Multiple-Selection Statement 125

The swi tch statement consists of a series of case labels, an optional default case and
statements to execute for each case. Figure 4.7 uses switch to count the number of each
different letter grade students earned on an exam.

1 // Fig. 4.7: fig04_07.c

2 // Counting Tletter grades with switch.

3 #include <stdio.h>

4

5 // function main begins program execution

6 int main(void)

7 {

8 int grade; // one grade

9 unsigned int aCount = 0; // number of As
10 unsigned int bCount = 0; // number of Bs
11 unsigned int cCount = 0; // number of Cs
12 unsigned int dCount = 0; // number of Ds
13 unsigned int fCount = 0; // number of Fs
14

15 puts();

16 puts();
17

18 // Toop until user types end-of-file key sequence
19 while ((grade = getchar()) !=) {
20
21 // determine which grade was input
22 switch (grade) { // switch nested in while
23
24 case : // grade was uppercase A
25 case : // or Towercase a
26 ++aCount; // increment aCount
27 break; // necessary to exit switch
28
29 case : // grade was uppercase B
30 case : // or lowercase b
31 ++bCount; // increment bCount
32 break; // exit switch
33
34 case : // grade was uppercase C
35 case : // or lowercase c
36 ++cCount; // increment cCount
37 break; // exit switch
38
39 case : // grade was uppercase D
40 case : // or Towercase d
41 ++dCount; // increment dCount
42 break; // exit switch
43
44 case : // grade was uppercase F
45 case : // or lowercase f
46 ++fCount; // increment fCount
47 break; // exit switch
48

Fig. 4.7 | Counting letter grades with switch. (Part | of 2.)

126 Chapter4 C Program Control

49 case : // ignore newlines,

50 case : // tabs,

51 case : // and spaces 1in input

52 break; // exit switch

53

54 default: // catch all other characters

55 printf(s);
56 puts();

57 break; // optional; will exit switch anyway

58 } // end switch

59 } // end while

60

6l // output summary of results

62 puts();

63 printf(, aCount); // display number of A grades
64 printf(, bCount); // display number of B grades
65 printf(, cCount); // display number of C grades
66 printf(, dCount); // display number of D grades
67 printf(, fCount); // display number of F grades

68 1} // end function main

Enter the letter grades.
Enter the EOF character to end input.

ncorrect Tetter grade entered. Enter a new grade.

>T P>PO0O0HMA-hQL>NNTQ

Z ——— Not all systems display a representation of the EOF character
otals for each letter grade are:

T
A:
B:
C
D
F

R NWN W

Fig. 4.7 | Counting letter grades with switch. (Part 2 of 2.)

Reading Character Input

In the program, the user enters letter grades for a class. In the while header (line 19),
while ((grade = getchar()) !=)

the parenthesized assignment (grade = getchar()) executes first. The getchar function
(from <stdio.h>) reads one character from the keyboard and stores that character in the

4.7 switch Multiple-Selection Statement 127

integer variable grade. Characters are normally stored in variables of type char. However,
an important feature of C is that characters can be stored in any integer data type because
they’re usually represented as one-byte integers in the computer. Thus, we can treat a char-
acter as either an integer or a character, depending on its use. For example, the statement

printf(;) D8

uses the conversion specifiers %c and %d to print the character a and its integer value, re-
spectively. The result is

The character (a) has the value 97.

The integer 97 is the character’s numerical representation in the computer. Many
computers today use the ASCII (American Standard Code for Information Interchange)
character set in which 97 represents the lowercase letter "a*. A list of the ASCII characters
and their decimal values is presented in Appendix B. Characters can be read with scanf
by using the conversion specifier %c.

Assignments as a whole actually have a value. This value is assigned to the variable on
the left side of the =. The value of the assignment expression grade = getchar () is the char-
acter that’s returned by getchar and assigned to the variable grade.

The fact that assignments have values can be useful for setting several variables to the
same value. For example,

a=b=c=0;

first evaluates the assignment c = 0 (because the = operator associates from right to left).
The variable b is then assigned the value of the assignment ¢ = 0 (which is 0). Then, the
variable a is assigned the value of the assignment b = (¢ = 0) (which is also 0). In the pro-
gram, the value of the assignment grade = getchar() is compared with the value of EOF
(a symbol whose acronym stands for “end of file”). We use EOF (which normally has the
value -1) as the sentinel value. The user types a system-dependent keystroke combination
to mean “end of file”—i.e., “I have no more data to enter.” EOF is a symbolic integer con-
stant defined in the <stdio.h> header (we'll see in Chapter 6 how symbolic constants are
defined). If the value assigned to grade is equal to EOF, the program terminates. We've
chosen to represent characters in this program as ints because EOF has an integer value
(again, normally -1).

Portability Tip 4.1
jg The keystroke combinations for entering EOF (end of file) are system dependent.
L

Portability Tip 4.2
;g Testing for the symbolic constant EOF [rather than -1 makes programs more portable. The
SN Cstandard states that EOF is a negative integral value (but not necessarily ~1). Thus, EOF
could have different values on different systems.

Entering the EOF Indicator
On Linux/UNIX/Mac OS X systems, the EOF indicator is entered by typing

<Ctrl> d

128 Chapter4 C Program Control

on a line by itself. This notation <Ctr/> d means to press the Enter key and then simulta-
neously press both the C#/ key and the d key. On other systems, such as Microsoft Win-
dows, the EOF indicator can be entered by typing

<Ctl> z

You may also need to press Enter on Windows.

The user enters grades at the keyboard. When the Enter key is pressed, the characters
are read by function getchar one character at a time. If the character entered is not equal
to EOF, the switch statement (line 22—58) is entered.

switch Statement Details

Keyword switch is followed by the variable name grade in parentheses. This is called the
controlling expression. The value of this expression is compared with each of the case la-
bels. Assume the user has entered the letter C as a grade. C is automatically compared to
each case in the switch. If a match occurs (case 'C':), the statements for that case are
executed. In the case of the letter C, cCount is incremented by 1 (line 36), and the switch
statement is exited immediately with the break statement.

The break statement causes program control to continue with the first statement after
the switch statement. The break statement is used because the cases in a switch state-
ment would otherwise run together. If break is 7oz used anywhere in a switch statement,
then each time a match occurs in the statement, the statements for a// the remaining cases
will be executed. (This feature is rarely useful, although it’s perfect for programming
Exercise 4.38—the iterative song The Twelve Days of Christmas!) If no match occurs, the
default case is executed, and an error message is printed.

switch Statement Flowchart

Each case can have one or more actions. The switch statement is different from all other
control statements in that braces are 7o required around multiple actions in a case of a
switch. The general switch multiple-selection statement (using a break in each case) is
flowcharted in Fig. 4.8. The flowchart makes it clear that each break statement at the end
of a case causes control to immediately exit the switch statement.

Forgetting a break statement when one is needed in a switch statement is a logic error.

: SE\ Common Programming Error 4.4

Software Engineering Observation 4.2

Provide a default case in switch statements. Cases not explicitly tested in a switch are
=Ara)) ignored. The default case helps prevent this by focusing you on the need to process
exceptional conditions. Sometimes no default processing is needed.

Although the case clauses and the default case clause in a switch statement can occur
in any order, it’s common to place the default clause last.

a7+ Good Programming Practice 4.5
(2%

In a switch statement when the default clause is last, the break statement isn’t required.
You may prefer to include this break for clarity and symmetry with other cases.

a7+ Good Programming Practice 4.6
(2%

4.7 switch Multiple-Selection Statement 129

true

case a —» caseaactions(s) —» break —»
falsel

true .
case b —» case bactions(s) —» break —

falsel

true
case z —» case zactions(s) —» break —>

falsel

default actions(s)
i:
O

Fig. 4.8 | switch multiple-selection statement with breaks.

Ignoring Newline, Tab and Blank Characters in Input
In the switch statement of Fig. 4.7, the lines

case : // ignore newlines,
case : // tabs,
case : // and spaces 1in input

break; // exit switch

cause the program to skip newline, tab and blank characters. Reading characters one at a
time can cause some problems. To have the program read the characters, you must send
them to the computer by pressing the Enter key. This causes the newline character to be
placed in the input after the character we wish to process. Often, this newline character
must be specially processed to make the program work correctly. By including the preced-
ing cases in our switch statement, we prevent the error message in the default case from
being printed each time a newline, tab or space is encountered in the input.

Error-Prevention Tip 4.5
Remember to provide processing capabilities for newline (and possibly other white-space)
characters in the input when processing characters one at a time.

Listing several case labels together (such as case 'D': case 'd': in Fig. 4.7) simply
means that the same set of actions is to occur for either of these cases.

130 Chapter4 C Program Control

Constant Integral Expressions

When using the switch statement, remember that each individual case can test only a
constant integral expression—i.e., any combination of character constants and integer
constants that evaluates to a constant integer value. A character constant can be represent-
ed as the specific character in single quotes, such as 'A'. Characters must be enclosed with-
in single quotes to be recognized as character constants—characters in double quotes are
recognized as strings. Integer constants are simply integer values. In our example, we've
used character constants. Remember that characters are represented as small integer values.

Notes on Integral Types

Portable languages like C must have flexible data type sizes. Different applications may need
integers of different sizes. C provides several data types to represent integers. In addition to
int and char, C provides types short int (which can be abbreviated as short) and Tong int
(which can be abbreviated as Tong). The C standard specifies the minimum range of values
for each integer type, but the actual range may be greater and depends on the implementa-
tion. For short ints the minimum range is —32767 to +32767. For most integer calcula-
tions, Tong ints are sufficient. The minimum range of values for Tong ints is 2147483647
to +2147483647. The range of values for an int greater than or equal to that of a short int
and less than or equal to that of a Tong int. On many of today’s platforms, ints and Tong
ints represent the same range of values. The data type signed char can be used to represent
integers in the range —127 to +127 or any of the characters in the computer’s character set.
See section 5.2.4.2 of the C standard document for the complete list of signed and un-
signed integer-type ranges.

4.8 do...while Repetition Statement

The do...while repetition statement is similar to the while statement. In the whiTe state-
ment, the loop-continuation condition is tested at the beginning of the loop before the
body of the loop is performed. The do...whiTe statement tests the loop-continuation con-
dition affer the loop body is performed. Therefore, the loop body will be executed ar least
once. When a do...while terminates, execution continues with the statement after the
while clause. It’s not necessary to use braces in the do...while statement if there’s only
one statement in the body. However, the braces are usually included to avoid confusion
between the while and do...while statements. For example,

while (condition)

is normally regarded as the header to a while statement. A do...while with no braces
around the single-statement body appears as

do
statement
while (condition);

which can be confusing. The last line—while(condition) ;—may be misinterpreted as a
while statement containing an empty statement. Thus, to avoid confusion, the do...while
with one statement is often written as follows:

do {
statement
} while (condition);

4.8 do...whiTe Repetition Statement 131

To eliminate the potential for ambiguity, you may want to include braces in do...while
statements, even if they’re not necessary.

-\ % Ej Good Programming Practice 4.7

Infinite loops are caused when the loop-continuation condition in a repetition statement
never becomes false. To prevent this, make sure there’s not a semicolon immediately after
a while or for statement’s header. In a counter-controlled loop, make sure the control
variable is incremented (or decremented) in the loop. In a sentinel-controlled loop, make
sure the sentinel value is eventually inpus.

ﬁ Common Programming Error 4.5

Figure 4.9 uses a do...while statement to print the numbers from 1 to 10. The con-
trol variable counter is preincremented in the loop-continuation test.

1 // Fig. 4.9: fig04_09.c

2 // Using the do...while repetition statement.

3 #include <stdio.h>

4

5 // function main begins program execution

6 1int main(void)

7 {

8 unsigned 1int counter = 1; // initialize counter
9

10 do {

11 printf(, counter); // display counter
12 } while (++counter <=); // end do...while

13 } // end function main

1 2 3 4 5 6 7 8 9 10

Fig. 4.9 | Using the do...whiTe repetition statement.

do...while Statement Flowchart
Figure 4.10 shows the do...while statement flowchart, which makes it clear that the loop-
continuation condition does not execute until after the action is performed az least once.

i)
action(s)
- true
condition

falseé

Fig. 4.10 | Flowcharting the do...whiTe repetition statement.

132 Chapter4 C Program Control

4.9 break and continue Statements

The break and continue statements are used to alter the flow of control. Section 4.7
showed how break can be used to terminate a switch statement’s execution. This section
discusses how to use break in a repetition statement.

break Statement

The break statement, when executed in a while, for, do...while or switch statement,
causes an immediate exit from that statement. Program execution continues with the next
statement. Common uses of the break statement are to escape eatly from a loop or to skip
the remainder of a switch statement (as in Fig. 4.7). Figure 4.11 demonstrates the break
statement in a for repetition statement. When the i f statement detects that x has become
5, break is executed. This terminates the for statement, and the program continues with
the printf after the for. The loop fully executes only four times.

1 // Fig. 4.11: fig04_11.c

2 // Using the break statement in a for statement.
3 #include <stdio.h>

4

5 // function main begins program execution

6 int main(void)

7 {

8 unsigned 1int x; // counter

9

10 // loop 10 times

11 for (x = 1; X <= po+x) {

12

13 // if x is 5, terminate Toop

14 if (x==5){

15 break; // break Toop only if x 1is 5

16 } // end if

17

18 printf(, X); // display value of x
19 } // end for
20
21 printf(, X)3

22 } // end function main

1234
Broke out of Toop at x ==

Fig. 4.11 | Using the break statement in a for statement.

continue Statement

The continue statement, when executed in a while, for or do...while statement, skips
the remaining statements in the body of that control statement and performs the next iter-
ation of the loop. In while and do...while statements, the loop-continuation test is eval-
uated immediately affer the continue statement is executed. In the for statement, the
increment expression is executed, then the loop-continuation test is evaluated. Eatlier, we
said that the while statement could be used in most cases to represent the for statement.

4.9 break and continue Statements 133

The one exception occurs when the increment expression in the while statement follows
the continue statement. In this case, the increment is 70z executed before the repetition-
continuation condition is tested, and the while does 7or execute in the same manner as
the for. Figure 4.12 uses the continue statement in a for statement to skip the printf
statement and begin the next iteration of the loop.

1 // Fig. 4.12: fig04_12.c

2 // Using the continue statement in a for statement.

3 #include <stdio.h>

4

5 // function main begins program execution

6 1int main(void)

7 {

8 unsigned int x; // counter

9

10 // loop 10 times

11 for (x = 1; x <= ;o ++x) {

12

13 // if x is 5, continue with next iteration of Toop
14 if (x=5){

15 continue; // skip remaining code in Toop body
16 } // end if

17

18 printf(, X); // display value of x

19 } // end for
20
21 puts()

22 } // end function main

1234678910
Used continue to skip printing the value 5

Fig. 4.12 | Using the continue statement in a for statement.

y Software Engineering Observation 4.3

Some programmers feel that break and continue violate the norms of structured
£3) programming. The effects of these statements can be achieved by structured programming
techniques we'll soon learn, so these programmers do not use break and continue.

35 Performance Tip 4.1
1 The break and continue statements, when used properly, perform faster than the cor-
responding structured techniques that we’ll soon learn.

There’s a tension between achieving quality software engineering and achieving the best-
£3) performing software. Often one of these goals is achieved at the expense of the other. For
all bur the most performance-intensive situations, apply the following guidelines: First,
make your code simple and correct; then make it fast and small, but only if necessary.

134 Chapter4 C Program Control

4.10 Logical Operators

So far we've studied only simple conditions, such as counter <= 10, total > 1000, and num-
ber !=sentinelValue. We've expressed these conditions in terms of the relational operators,
>, <, >= and <=, and the eguality operators, == and !=. Each decision tested precisely one con-
dition. To test multiple conditions in the process of making a decision, we had to perform
these tests in separate statements or in nested if or if...e1se statements. C provides logical
operarors that may be used to form more complex conditions by combining simple condi-
tions. The logical operators are & & (logical AND), || (logical OR) and ! (logical NOT
also called logical negation). We'll consider examples of each of these operators.

Logical AND (&&) Operator
Suppose we wish to ensure that two conditions are both true before we choose a certain
path of execution. In this case, we can use the logical operator && as follows:

if (gender == | && age >=)
++seniorFemales;

This i f statement contains two simple conditions. The condition gender == 1 might be eval-
uated, for example, to determine whether a person is a female. The condition age >= 65 is
evaluated to determine whether a person is a senior citizen. The two simple conditions are
evaluated first because == and >= are have higher precedence than &&. The i f statement then
considers the combined condition gender == 1 & age >= 65, which is #rue if and only if bozh
of the simple conditions are #7ue. Finally, if this combined condition is true, then the count
of seniorFemales is incremented by 1. If either or both of the simple conditions are false, then
the program skips the incrementing and proceeds to the statement following the if.

Figure 4.13 summarizes the & & operator. The table shows all four possible combi-
nations of zero (false) and nonzero (true) values for expressionl and expression2. Such
tables are often called truth tables. C evaluates all expressions that include relational opera-
tors, equality operators, and/or logical operators to 0 or 1. Although C sets a true value to 1,
it accepts any nonzero value as true.

expression | expression2 expression| && expression2

0 0 0
0 nonzero 0
nonzero 0 0
nonzero nonzero 1

Fig. 4.13 | Truth table for the logical AND (&&) operator.

Logical OR (||) Operator

Now let’s consider the | | (logical OR) operator. Suppose we wish to ensure at some point
in a program that either or both of two conditions are zrue before we choose a certain path
of execution. In this case, we use the || operator, as in the following program segment:

if (semesterAverage >= || finalExam >=)
puts(N

4.10 Logical Operators 135

This statement also contains two simple conditions. The condition semesterAverage >=
90 is evaluated to determine whether the student deserves an “A” in the course because of
a solid performance throughout the semester. The condition finalExam >= 90 is evaluated
to determine whether the student deserves an “A” in the course because of an outstanding
performance on the final exam. The if statement then considers the combined condition

semesterAverage >= || finalExam >=

and awards the student an “A” if either or both of the simple conditions are #rue. The mes-
sage “Student grade is A” is nor printed only when bozh of the simple conditions are false
(zero). Figure 4.14 is a truth table for the logical OR operator (| |).

expressionl expression2 expressionl || expression2
0 0 0
0 nonzero 1
nonzero 0 1
nonzero nonzero 1

Fig. 4.14 | Truth table for the logical OR (| |) operator.

The && operator has a higher precedence than | |. Both operators associate from left to
right. An expression containing & or | | operators is evaluated o7/y until truth or falsehood
is known. Thus, evaluation of the condition

gender == 1 && age >=

will stop if gender is not equal to 1 (i.e., the entire expression is false), and continue if gen-
der is equal to 1 (i.c., the entire expression could still be true if age >= 65). This perfor-
mance feature for the evaluation of logical AND and logical OR expressions is called
short-circuit evaluation.

s Performance Tip 4.2

e In expressions using operator &&, make the condition that'’s most likely to be false the lefi-
most condition. In expressions using operator | |, make the condition that’s most likely to
be true the lefimost condition. This can reduce a program’s execution time.

Logical Negation (!) Operator

C provides ! (logical negation) to enable you to “reverse” the meaning of a condition. Un-
like operators && and | |, which combine swo conditions (and are therefore binary opera-
tors), the logical negation operator has only a single condition as an operand (and is
therefore a unary operator). The logical negation operator is placed before a condition
when we’re interested in choosing a path of execution if the original condition (without
the logical negation operator) is false, such as in the following program segment:

if (!'(grade == sentinelValue))
printf(, grade);
The parentheses around the condition grade == sentinelValue are needed because the
logical negation operator has a higher precedence than the equality operator. Figure 4.15
is a truth table for the logical negation operator.

136 Chapter 4 C Program Control

expression lexpression

0 1
nonzero 0

Fig. 4.15 | Truth table for operator ! (logical negation).

In most cases, you can avoid using logical negation by expressing the condition dif-
ferently with an appropriate relational operator. For example, the preceding statement
may also be written as follows:

if (grade != sentinelValue)
printf(, grade);

Summary of Operator Precedence and Associativity
Figure 4.16 shows the precedence and associativity of the operators introduced to this
point. The operators are shown from top to bottom in decreasing order of precedence.

Operators Associativity Type

++ (postfix) -~ (postfix) right to left postfix

+ - U 4+ (prefix) -- (prefix) (gyped right to left unary
/% left to right multiplicative
+ - left to right additive

< <= > >= left to right relational

= = left to right equality
&& left to right logical AND
I left to right logical OR

A right to left conditional
= 4= = %= /= %= right to left assignment
, left to right comma

Fig. 4.16 | Operator precedence and associativity.

The _Bool Data Type

The C standard includes a boolean type—represented by the keyword _Bool—which can
hold only the values 0 or 1. Recall C’s convention of using zero and nonzero values to rep-
resent false and true—the value 0 in a condition evaluates to false, while any nonzero value
evaluates to true. Assigning any non-zero value to a _Boo1 sets it to 1. The standard also
includes the <stdbool.h> header, which defines bool as a shorthand for the type _Boo1,
and true and false as named representations of 1 and 0, respectively. At preprocessor
time, bool, true and false are replaced with _Boo1, 1 and 0. Section F.8 presents an ex-
ample that uses booT, true and false. The example uses a programmer-defined function,
a concept we introduce in Chapter 5. You can study the example now, but might wish to
revisit it after reading Chapter 5. Microsoft Visual C++ does 7ot implement the _Boo1 data

type.

4.11 Confusing Equality (==) and Assignment (=) Operators 137

4.11 Confusing Equality (==) and Assignment (=)
Operators

There’s one type of error that C programmers, no matter how experienced, tend to make
so frequently that we felt it was worth a separate section. That error is accidentally swap-
ping the operators == (equality) and = (assignment). What makes these swaps so damaging
is the fact that they do 7oz ordinarily cause compilation errors. Rather, statements with these
errors ordinarily compile correctly, allowing programs to run to completion while likely
generating incorrect results through runtime logic errors.

Two aspects of C cause these problems. One is that any expression in C that produces
a value can be used in the decision portion of any control statement. If the value is 0, it’s
treated as false, and if the value is nonzero, it’s treated as true. The second is that assign-
ments in C produce a value, namely the value that’s assigned to the variable on the left side
of the assignment operator. For example, suppose we intend to write

if (payCode ==)
printf(s);

but we accidentally write

if (payCode =)
printf(:);
The first i f statement properly awards a bonus to the person whose paycode is equal to 4.
The second i f statement—the one with the error—evaluates the assignment expression in
the if condition. This expression is a simple assignment whose value is the constant 4. Be-
cause any nonzero value is interpreted as “true,” the condition in this if statement is al-
ways true, and not only is the value of payCode inadvertantly set to 4, but the person always
receives a bonus regardless of what the actual paycode is!

Using operator == for assignment or using operator = for equality is a logic error.

: S ? Common Programming Error 4.6

Ivalues and rvalues
You’ll probably be inclined to write conditions such as x == 7 with the variable name on
the left and the constant on the right. By reversing these terms so that the constant is on
the left and the variable name is on the right, as in 7 == x, then if you accidentally replace
the == operator with =, you’ll be protected by the compiler. The compiler will treat this as
a syntax error, because only a variable name can be placed on the left-hand side of an as-
signment expression. This will prevent the potential devastation of a runtime logic error.
Variable names are said to be /values (for “left values”) because they can be used on
the /eft side of an assignment operator. Constants are said to be rvalues (for “right values”)
because they can be used on only the right side of an assignment operator. fvalues can also
be used as rvalues, but not vice versa.

Error-Prevention Tip 4.6

% When an equality expression has a variable and a constant, as in x == 1, you may prefer to
write it with the constant on the left and the variable name on the right (e.g., 1 == x as pro-
tection against the logic error that occurs when you accidentally replace operator == with =).

138 Chapter4 C Program Control

Confusing == and = in Standalone Statements
The other side of the coin can be equally unpleasant. Suppose you want to assign a value
to a variable with a simple statement such as

X = 13
but instead write
X == 1;

Here, too, this is not a syntax error. Rather the compiler simply evaluates the conditional
expression. If x is equal to 1, the condition is true and the expression returns the value 1.
If x is not equal to 1, the condition is false and the expression returns the value 0. Regard-
less of what value is returned, there’s no assignment operator, so the value is simply Josz,
and the value of x remains unaltered, probably causing an execution-time logic error. Un-
fortunately, we do not have a handy trick available to help you with this problem! Many
compilers, however, will issue a warning on such a statement.

After you write a program, text search it for every = and check that it’s used properly.

% Error-Prevention Tip 4.7

4.12 Structured Programming Summary

Just as architects design buildings by employing the collective wisdom of their profession,
so should programmers design programs. Our field is younger than architecture is, and our
collective wisdom is considerably sparser. We've learned a great deal in a mere six decades.
Perhaps most important, we’ve learned that structured programming produces programs
that are easier (than unstructured programs) to understand and therefore are easier to test,
debug, modify, and even prove correct in a mathematical sense.

Chapters 3 and 4 have concentrated on C’s control statements. Each statement has
been presented, flowcharted and discussed separately with examples. Now, we summarize
the results of Chapters 3 and 4 and introduce a simple set of rules for the formation and
properties of structured programs.

Figure 4.17 summarizes the control statements discussed in Chapters 3 and 4. Small
circles are used in the figure to indicate the single entry point and the single exit point of each
statement. Connecting individual flowchart symbols arbitrarily can lead to unstructured
programs. Therefore, the programming profession has chosen to combine flowchart sym-
bols to form a limited set of control statements, and to build only structured programs by
propetly combining control statements in two simple ways. For simplicity, only single-
entry/single-exir control statements are used—there’s only one way to enter and only one
way to exit each control statement. Connecting control statements in sequence to form
structured programs is simple—the exit point of one control statement is connected
directly to the entry point of the next—i.e., the control statements are simply placed one
after another in a program—we’ve called this “control-statement stacking.” The rules for
forming structured programs also allow for control statements to be nested.

Figure 4.18 shows the rules for forming structured programs. The rules assume that
the rectangle flowchart symbol may be used to indicate any action including input/output.
Figure 4.19 shows the simplest flowchart.

4.12 Structured Programming Summary 139

Sequence Selection

{

if statement if...else statement

i) (single selection) i) (double selection)
T F T

5 : :

\
A

switch statement
(multiple selection)

Q=
-
l—|

T—» —» break —»

—» break —»
lF

I, —» break —»
lF
| <
O

____________ N
Repetition
whiTe statement do...whiTe statement for statement
! |
F ! v
I I, I

Fig. 4.17 | C's single-entry/single-exit sequence, selection and repetition statements.

140 Chapter4 C Program Control

Rules for forming structured programs

1) Begin with the “simplest flowchart” (Fig. 4.19).

2) Any rectangle (action) can be replaced by zwo rectangles
(actions) in sequence.

3) Any rectangle (action) can be replaced by a7y control statement
(sequence, if, if...else, switch, while, do...while or for).

4) Rules 2 and 3 may be applied as often as you like and in any
order.

Fig. 4.18 | Rules for forming structured programs.

Fig. 4.19 | Simplest flowchart.

Applying the rules of Fig. 4.18 always results in a structured flowchart with a neat,
building-block appearance. Repeatedly applying Rule 2 to the simplest flowchart (Fig. 4.19)
results in a structured flowchart containing many rectangles 77 sequence (Fig. 4.20). Rule 2
generates a stack of control statements; so we call Rule 2 the stacking rule.

Rule 3 is called the nesting rule. Repeatedly applying Rule 3 to the simplest flowchart
results in a flowchart with neatly nested control statements. For example, in Fig. 4.21, the
rectangle in the simplest flowchart is first replaced with a double-selection (if...else)
statement. Then Rule 3 is applied again to both of the rectangles in the double-selection
statement, replacing each of these rectangles with double-selection statements. The dashed
box around each of the double-selection statements represents the rectangle that was
replaced in the original flowchart.

Rule 4 generates larger, more involved, and more deeply nested structures. The flow-
charts that emerge from applying the rules in Fig. 4.18 constitute the set of all possible
structured flowcharts and hence the set of all possible structured programs.

It’s because of the elimination of the goto statement that these building blocks never
overlap one another. The beauty of the structured approach is that we use only a small
number of simple single-entry/single-exit pieces, and we assemble them in only zwo simple
ways. Figure 4.22 shows the kinds of stacked building blocks that emerge from applying
Rule 2 and the kinds of nested building blocks that emerge from applying Rule 3. The
figure also shows the kind of overlapped building blocks that cannot appear in structured
flowcharts (because of the elimination of the goto statement).

4.12 Structured Programming Summary 141

Fig. 4.21 | Applying Rule 3 of Fig. 4.18 to the simplest flowchart.

142 Chapter 4 C Program Control

Stacked building blocks Nested building blocks

Overlapping building blocks
(llegal in structured programs)

Fig. 4.22 | Stacked, nested and overlapped building blocks.

If the rules in Fig. 4.18 are followed, an unstructured flowchart (such as that in
Fig. 4.23) cannot be created. If you’re uncertain whether a particular flowchart is struc-
tured, apply the rules of Fig. 4.18 in reverse to try to reduce the flowchart to the simplest
flowchart. If you succeed, the original flowchart is structured; otherwise, it’s not.

.

-

Fig. 4.23 | An unstructured flowchart.

Structured programming promotes simplicity. Bohm and Jacopini showed that only
three forms of control are needed:

* Sequence
e Selection

* Repetition

4.13 Secure C Programming 143

Sequence is straightforward. Selection is implemented in one of three ways:
* if statement (single selection)

e if...else statement (double selection)

* switch statement (multiple selection)

I¢’s straightforward to prove that the simple if statement is sufficient to provide any form
of selection—everything that can be done with the if...eTse statement and the switch
statement can be implemented with one or more i f statements.

Repetition is implemented in one of three ways:

* while statement
* do...while statement
e for statement

I¢’s straightforward to prove that the while statement is sufficient to provide any form
of repetition. Everything that can be done with the do...while statement and the for
statement can be done with the while statement.

Combining these results illustrates that any form of control ever needed in a C pro-
gram can be expressed in terms of only #hree forms of control:

* sequence
e if statement (selection)
* while statement (repetition)

And these control statements can be combined in only mwo ways—stacking and
nesting. Indeed, structured programming promotes simplicity.

In Chapters 3 and 4, we discussed how to compose programs from control statements
containing actions and decisions. In Chapter 5, we introduce another program structuring
unit called the function. We'll learn to compose large programs by combining functions,
which, in turn, are composed of control statements. We'll also discuss how using functions
promotes software reusability.

4.13 Secure C Programming

Checking Function scanf’s Return Value

Figure 4.6 used the math library function pow, which calculates the value of its first argu-
ment raised to the power of its second argument and rezurns the result as a double value.
The calculation’s result was then used in the statement that called pow.

Many functions return values indicating whether they executed successfully. For
example, function scanf returns an int indicating whether the input operation was suc-
cessful. If an input failure occurs, scanf returns the value EOF (defined in <stdio.h>); oth-
erwise, it returns the number of items that were read. If this value does 70t match the number
you intended to read, then scanf was unable to complete the input operation.

Consider the following statement from Fig. 3.6

scanf(, &grade); // read grade from user

which expects to read one int value. If the user enters an integer, scanf returns 1 indicat-
ing that one value was indeed read. If the user enters a string, such as "he110", scanf re-

144 Chapter 4 C Program Control

turns 0 indicating that it was unable to read the input as an integer. In this case, the
variable grade does 7oz receive a value.
Function scanf can read multiple inputs, as in

scanf(, &numberl, &number2); // read two integers

If the input is successful, scanf will return 2 indicating that two values were read. If the
user enters a string for the first value, scanf will return 0 and neither numberl nor number2
will receive values. If the user enters an integer followed by a string, scanf will return 1
and only numberl will receive a value.

To make your input processing more robust, check scanf’s return value to ensure that
the number of inputs read matches the number of inputs expected. Otherwise, your pro-
gram will use the values of the variables as if scanf completed successfully. This could lead
to logic errors, program crashes or even attacks.

Range Checking

Even if a scanf operates successfully, the values read might still be invalid. For example,
grades are typically integers in the range 0-100. In a program that inputs such grades, you
should validate the grades by using range checking to ensure that they are values from 0
to 100. You can then ask the user to reenter any value that’s out of range. If a program
requires inputs from a specific set of values (e.g., non-sequential product codes), you can
ensure that each input matches a value in the set. For more information, see Chapter 5,
“Integer Security” of Robert Seacord’s book Secure Coding in C and C+ +.

Summary

Section 4.2 Repetition Essentials
* Most programs involve repetition, or looping. A loop is a group of instructions the computer ex-
ecutes repeatedly while some loop-continuation condition remains true.

* Counter-controlled repetition is sometimes called definite repetition because we know in ad-
vance exactly how many times the loop will execute.

* Sentinel-controlled repetition is sometimes called indefinite repetition because it’s not known in
advance how many times the loop will execute; the loop includes statements that obtain data each
time the loop is performed.

* In counter-controlled repetition, a control variable is used to count the number of repetitions.
The control variable is incremented (or decremented) each time the group of instructions is per-
formed. When the correct number of repetitions has been performed, the loop terminates, and
the program resumes execution with the statement after the repetition statement.

* The sentinel value indicates “end of data.” The sentinel is entered after all regular data items have
been supplied to the program. Sentinels must be distinct from regular data items.

Section 4.3 Counter-Controlled Repetition

* Counter-controlled repetition requires the name of a control variable (or loop counter), the ini-
tial value of the control variable, the increment (or decrement) by which the control variable is
modified each time through the loop, and the condition that tests for the final value of the con-
trol variable (i.e., whether looping should continue).

Section 4.4 for Repetition Statement
* The for repetition statement handles all the details of counter-controlled repetition.

Summary 145

When the for statement begins executing, its control variable is initialized. Then, the loop-con-
tinuation condition is checked. If the condition is true, the loop’s body executes. The control
variable is then incremented, and the loop begins again with the loop-continuation condition.
This process continues until the loop-continuation condition fails.

The general format of the for statement is

for (expressionl; expression2; expression3)
statement

where expression] initializes the loop-control variable, expression2 is the loop-continuation con-
dition, and expression3 increments the control variable.

In most cases, the for statement can be represented with an equivalent while statement as in:
expressionl ;

while (expression2) {
statement
expression3;

}

The comma operator guarantees that lists of expressions evaluate from left to right. The value of
the entire expression is that of the rightmost expression.

The three expressions in the for statement are optional. If expression2 is omitted, C assumes that
the condition is true, thus creating an infinite loop. One might omit expressionl if the control
variable is initialized elsewhere in the program. expression3 might be omitted if the increment is
calculated by statements in the body of the for statement or if no increment is needed.

The increment expression in the for statement acts like a stand-alone C statement at the end of
the body of the for.

The two semicolons in the for statement are required.

Section 4.5 for Statement: Notes and Observations

The initialization, loop-continuation condition and increment can contain arithmetic expressions.
The “increment” may be negative (in which case it’s really a decrement and the loop actually
counts downward).

If the loop-continuation condition is initially false, the body portion of the loop isn’t performed.
Instead, execution proceeds with the statement following the for statement.

Section 4.6 Examples Using the for Statement

Function pow performs exponentiation. The function pow(x, y) calculates the value of x raised
to the yth power. It takes two arguments of type double and returns a double value.

Type doubTe is a floating-point type much like float, but typically a variable of type double can
store a value of much greater magnitude with greater precision than float.

The header <math.h> should be included whenever a math function such as pow is used.

The conversion specifier %21.2f denotes that a floating-point value will be displayed right justi-
fied in a field of 21 characters with two digits to the right of the decimal point.

To left justify a value in a field, place a - (minus sign) between the % and the field width.

Section 4.7 switch Multiple-Selection Statement

Occasionally, an algorithm will contain a series of decisions in which a variable or expression is
tested separately for each of the constant integral values it may assume, and different actions are
taken. This is called multiple selection. C provides the switch statement to handle this.

146 Chapter 4 C Program Control

* The switch statement consists of a series of case labels, an optional default case and statements
to execute for each case.

* The getchar function (from the standard input/output library) reads and returns one character
from the keyboard.

¢ Characters are normally stored in variables of type char. Characters can be stored in any integer
data type because they’re usually represented as one-byte integers in the computer. Thus, we can
treat a character as either an integer or a character, depending on its use.

* Many computers today use the ASCII (American Standard Code for Information Interchange)
character set in which 97 represents the lowercase letter 'a'.

e Characters can be read with scanf by using the conversion specifier %c.

* Assignment expressions as a whole actually have a value. This value is assigned to the variable on

the left side of the =.

¢ The fact that assignment statements have values can be useful for setting several variables to the
same value, asina = b = c = 0;.

* EOF is often used as a sentinel value. EOF is a symbolic integer constant defined in <stdio.h>.

* On Linux/UNIX systems and many others, the EOF indicator is entered by typing <Ctr/> 4. On
other systems, such as Microsoft Windows, the EOF indicator can be entered by typing <Ctr/> z.

* Keyword switch is followed by the controlling expression in parentheses. The value of this ex-
pression is compared with each of the case labels. If a match occurs, the statements for that case
execute. If no match occurs, the default case executes.

* The break statement causes program control to continue with the statement after the switch.
The break statement prevents the cases in a switch statement from running together.

¢ Each case can have one or more actions. The switch statement is different from all other control
statements in that braces are not required around multiple actions in a case of a switch.

e Listing several case labels together simply means that the same set of actions is to occur for any
of these cases.

* Remember that the switch statement can be used only for testing a constant integral expres-
sion—i.e., any combination of character constants and integer constants that evaluates to a con-
stant integer value. A character constant can be represented as the specific character in single
quotes, such as 'A'. Characters must be enclosed within single quotes to be recognized as char-
acter constants. Integer constants are simply integer values.

* C provides several data types to represent integers. In addition to int and char, C provides types
short int (which can be abbreviated as short) and Tong int (which can be abbreviated as 1ong).
The C standard specifies the minimum range of values for each integer type, but the actual range
may be greater and depends on the implementation. For short ints the minimum range is 32767
to +32767. The minimum range of values for Tong ints is —2147483647 to +2147483647. The
range of values for an int greater than or equal to that of a short int and less than or equal to that
ofalong int. On many of today’s platforms, ints and Tong ints represent the same range of values.
The data type signed char can be used to represent integers in the range —127 to +127 or any of
the characters in the computer’s character set. See section 5.2.4.2 of the C standard document for
the complete list of signed and unsigned integer-type ranges.

Section 4.8 do...while Repetition Statement

* The do...while statement tests the loop-continuation condition affer the loop body is performed.
Therefore, the loop body will be executed at least once. When a do...whi1e terminates, execution
continues with the statement after the while clause.

Terminology 147

Section 4.9 break and continue Statements

The break statement, when executed in a while, for, do...while or switch statement, causes im-
mediate exit from that statement. Program execution continues with the next statement.

The continue statement, when executed in a while, for or do...while statement, skips the re-
maining statements in the body of that control statement and performs the next iteration of the
loop. In while and do...while statements, the loop-continuation test is evaluated immediately
after the continue statement is executed. In the for statement, the increment expression is exe-
cuted, then the loop-continuation test is evaluated.

Section 4.10 Logical Operators

Logical operators may be used to form complex conditions by combining simple conditions. The
logical operators are && (logical AND), || (logical OR) and ! (logical NOT, or logical negation).

A condition containing the && (logical AND) operator is true if and only if both of the simple
conditions are true.

C evaluates all expressions that include relational operators, equality operators, and/or logical op-
erators to 0 or 1. Although C sets a true value to 1, it accepts 47y nonzero value as true.

A condition containing the || (logical OR) operator is true if either or both of the simple con-
ditions are true.

The && operator has a higher precedence than | |. Both operators associate from left to right.
An expression containing & or | | operators is evaluated only undil truth or falsehood is known.

C provides ! (logical negation) to enable you to “reverse” the meaning of a condition. Unlike the
binary operators & and | |, which combine two conditions, the unary logical negation operator
has only a single condition as an operand.

The logical negation operator is placed before a condition when we’re interested in choosing a
path of execution if the original condition (without the logical negation operator) is false.

In most cases, you can avoid using logical negation by expressing the condition differently with
an appropriate relational operator.

Section 4.11 Confusing Equality (==) and Assignment (=) Operators

Programmers often accidentally swap the operators == (equality) and = (assignment). What
makes these swaps so damaging is that they do not ordinarily cause syntax errors. Rather, state-
ments with these errors ordinarily compile correctly, allowing programs to run to completion
while likely generating incorrect results through runtime logic errors.

You may be inclined to write conditions such as x == 7 with the variable name on the left and the
constant on the right. By reversing these terms so that the constant is on the left and the variable
name is on the right, as in 7 == x, then if you accidentally replace the == operator with =, you’ll
be protected by the compiler. The compiler will treat this as a syntax error, because only a vari-
able name can be placed on the left-hand side of an assignment statement.

Variable names are said to be lvalues (for “left values”) because they can be used on the left side
of an assignment operator.

Constants are said to be rvalues (for “right values”) because they can be used only on the right
side of an assignment operator. /values can also be used as rvalues, but not vice versa.

Terminology
ASCII (American Standard Code for Informa- char primitive type 127

tion Interchange) character set 127 comma operator 119

case label 128 constant integral expression 130

148 Chapter 4 C Program Control

control variable 115 logical NOT operator (1) 134
controlling expression in a switch 128 loop-continuation condition 115
decrement a control variable 116 lvalue (“left value”) 137
definite repetition 115 <math.h> header 124

final value of a control variable 116 name of a control variable 116
function prototype 124 nesting rule 140

increment a control variable 116 off-by-one error 118
indefinite repetition 115 pow (power) function 124
initial value of a control variable 116 rvalue (“right value”) 137
logical AND operator (&&) 134 short-circuit evaluation 135
logical negation operator (!) 134 stacking rule 140

logical OR operator (| |) 134 truth table 134

Self-Review Exercises

4.1

4.2

4.3

4.4

Fill in the blanks in each of the following statements.

a)
b)
<)
d)
e)
f)

Counter-controlled repetition is also known as repetition because it’s known
in advance how many times the loop will be executed.

Sentinel-controlled repetition is also known as repetition because it’s not
known in advance how many times the loop will be executed.

In counter-controlled repetition, a(n) is used to count the number of times a
group of instructions should be repeated.

The statement, when executed in a repetition statement, causes the next it-
eration of the loop to be performed immediately.

The statement, when executed in a repetition statement or a switch, causes
an immediate exit from the statement.

The is used to test a particular variable or expression for each of the constant
integral values it may assume.

State whether the following are #rue or false. If the answer is false, explain why.

a)
b)
<)

The default case is required in the switch selection statement.
The break statement is required in the default case of a switch selection statement.
The expression (x > y & a < b) is true if either x > y is true or a < b is true.

d) An expression containing the | | operator is true if either or both of its operands is true.

Write a statement or a set of statements to accomplish each of the following tasks:

a)
b)
<)
d)

e)

Sum the odd integers between 1 and 99 using a for statement. Assume the integer vari-
ables sum and count have been defined.

Print the value 333.546372 in a field width of 15 characters with precisions of 1, 2, 3, 4
and 5. Left justify the output. What are the five values that prine?

Calculate the value of 2.5 raised to the power of 3 using the pow function. Print the re-
sult with a precision of 2 in a field width of 10 positions. What is the value that prints?
Print the integers from 1 to 20 using a while loop and the counter variable x. Assume
that the variable x has been defined, but not initialized. Print only five integers per line.
[Hint: Use the calculation x % 5. When the value of this is 0, print a newline character,
otherwise print a tab character.]

Repeat Exercise 4.3(d) using a for statement.

Find the error in each of the following code segments and explain how to correct it.

a)

x = 1;
while (x <=);
+4X;

b)

<)

d)

Answers to Self-Review Exercises 149

for (y = .15y != ;Y +=)
printf(, Y)
switch (n) {
case
puts(D3
case
puts(E
break;
default:
puts()3
break;
}
The following code should print the values 1 to 10.

n=1;

while (n <)
printf(, N++)3

Answers to Self-Review Exercises

4.1 a)

definite. b) indefinite. c) control variable or counter. d) continue. e) break. f) switch

selection statement.

4.2 a)
b)
c)

d)
4.3 a)

False. The default case is optional. If no default action is needed, then there’s no need
for a default case.

False. The break statement is used to exit the switch statement. The break statement
is not required in any case.

False. Both of the relational expressions must be true in order for the entire expression
to be true when using the && operator.

True.
sum = O;
for (count = 1; count <= ; count +=) {

sum += count;
}
printf(); // prints 333.5
printf(); // prints 333.55
printf(); // prints 333.546
printf(); // prints 333.5464
printf(); // prints 333.54637
printf(, pow(,)); // prints 15.63
x = 1;
while (x <=) {

printf(, X)

if (x% 5 =10){

puts(D3
}
else {
printf(s);
}
++X;

150

4.4

e)

a)

Chapter 4 C Program Control

or
x =1;
while (x <=) {
if (x%5==0) {
printf(, X++)3
}
else {
printf(, X++)
}
}
or
X = U5
while (++x <=) {
if (x%5==0) {
printf(, X);
}
else {
printf(, X);
}
}
for (x = 1; x <= ;o++x) {
printf(, X)
if (x%5==0) {
puts(J;
}
else {
printf(s);
}
}
or
for (x = 1; x <= ;o+H+x) {
if (x%5==0) {
printf(, X)
}
else {
printf(y X)3
}
}

Error: The semicolon after the while header causes an infinite loop.
Correction: Replace the semicolon with a { or remove both the ; and the }.
Error: Using a floating-point number to control a for repetition statement.
Correction: Use an integer, and perform the proper calculation to get the values you desire.

for Cy = 1; y != 10; ++y)

printf(, (float) y /);

Error: Missing break statement in the statements for the first case.
Correction: Add a break statement at the end of the statements for the first case. This
is not necessarily an error if you want the statement of case 2: to execute every time the
case 1: statement executes.

Exercises 151

d) Error: Improper relational operator used in the while repetition-continuation condition.
Correction: Use <= rather than <.

Exercises
4.5 Find the error in each of the following. (Note: There may be more than one error.)
a) For (x = , X >= 1, 44X)
printf(, X)

b) The following code should print whether a given integer is odd or even:
switch (value %) {

case

puts(s
case

puts();
}
¢) The following code should input an integer and a character and print them. Assume the
user types as input 100 A.

scanf(, &intval);
charVal = getchar(Q);
printf(, intval, charval);
d) for (x = A== ;X 4=) {
printf(, X);
}
¢) The following code should output the odd integers from 999 to 1:
for (x = px >= 13 X +=2) {
printf(y X)
3
f) The following code should output the even integers from 2 to 100:
counter = 7;
Do {
if (counter % 2 == 0) {
printf(, counter);
}
counter += 7;
} While (counter <);

g) The following code should sum the integers from 100 to 150 (assume total is initial-

ized to 0):
for (x = ;X <= ;oHx)5 {
total += x;
}
4.6 State which values of the control variable x are printed by each of the following for statements:
a) for (x =2; x <= 13; x += 2) {
printf(, X)j;
}
b) for (x = 5; x <= 22; x += 7) {
printf(, X);
}
c) for (x = 3; x <= 15; x += 2) {
printf(, X)j;

152 Chapter4 C Program Control

d)for'(x:;x<=;x+=) {
printf(, X)
}
e) for (x =12; x>=2; x -=3) {
printf(, X)
}
4.7 Write for statements that print the following sequences of values:

a) 1,2,3,4,5,6,7

b) 3,8,13,18,23

o 20,14,8,2,-4,-10
d) 19,27, 35, 43, 51

4.8 What does the following program do?

I #include <stdio.h>

2

3 // function main begins program execution

4 int main(void)

5 {

6 unsigned int x;

7 unsigned 1int y;

8 unsigned 1int i;

9 unsigned int j;

10

11 // prompt user for input

12 printf(, s
13 scanf(, &, &y); // read values for x and y
14

15 for (i =1; 1 <=vy; ++i) { // count from 1 to y
16

17 for (j=1; j <=x; ++j) { // count from 1 to x
18 printf(,); // output @

19 } // end inner for
20
21 puts(); // begin new Tine
22 } // end outer for

23 } // end function main

4.9 (Sum a Sequence of Integers) Write a program that sums a sequence of integers. Assume that
the first integer read with scanf specifies the number of values remaining to be entered. Your pro-
gram should read only one value each time scanf is executed. A typical input sequence might be

5 100 200 300 400 500
where the 5 indicates that the subsequent five values are to be summed.

4.10 (Average a Sequence of Integers) Write a program that calculates and prints the average of
several integers. Assume the last value read with scanf is the sentinel 9999. A typical input sequence

might be
10 8 11 7 9 9999
indicating that the average of all the values preceding 9999 is to be calculated.

4.11 (Find the Smallest) Write a program that finds the smallest of several integers. Assume that
the first value read specifies the number of values remaining.

4.12 (Calculating the Sum of Even Integers) Write a program that calculates and prints the sum
of the even integers from 2 to 30.

Exercises 153

4.13 (Calculating the Product of Odd Integers) Write a program that calculates and prints the
product of the odd integers from 1 to 15.

4.14 (Factorials) The factorial function is used frequently in probability problems. The factorial of
a positive integer 7 (written 7! and pronounced “z factorial”) is equal to the product of the positive
integers from 1 to 7. Write a program that evaluates the factorials of the integers from 1 to 5. Print the
results in tabular format. What difficulty might prevent you from calculating the factorial of 202

4.15 (Modified Compound-Interest Program) Modify the compound-interest program of
Section 4.6 to repeat its steps for interest rates of 5%, 6%, 7%, 8%, 9%, and 10%. Use a for loop
to vary the interest rate.

4.16 (Triangle-Printing Program) Write a program that prints the following patterns separately,
one below the other. Use for loops to generate the patterns. All asterisks (*) should be printed by a
single printf statement of the form printf("%s", "*"); (this causes the asterisks to print side by
side). [Hint: The last two patterns require that each line begin with an appropriate number of blanks.]

(A (®) © ®
* Fekdededehdhddd Fekdededehdddd kS

¥ Fdekdededehhdd Fededd

Fekdededehdhd dekd

Fededededed

ek dededehd

Fededk dededededk

&

Fededededehdedehk kS * dededdededededd

4.17 (Calculating Credit Limits) Collecting money becomes increasingly difficult during peri-
ods of recession, so companies may tighten their credit limits to prevent their accounts receivable
(money owed to them) from becoming too large. In response to a prolonged recession, one company
has cut its customers’ credit limits in half. Thus, if a particular customer had a credit limit of $2000,
it’s now $1000. If a customer had a credit limit of $5000, it’s now $2500. Write a program that
analyzes the credit status of three customers of this company. For each customer you’re given:

a) The customer’s account number

b) The customer’s credit limit before the recession

¢) The customer’s current balance (i.e., the amount the customer owes the company).

Your program should calculate and print the new credit limit for each customer and should

determine (and print) which customers have current balances that exceed their new credit limits.

4.18 (Bar Chart Printing Program) One interesting application of computers is drawing graphs
and bar charts (sometimes called “histograms”). Write a program that reads five numbers (each be-
tween 1 and 30). For each number read, your program should print a line containing that number
of adjacent asterisks. For example, if your program reads the number seven, it should print ###ssx,

4.19 (Calculating Sales) An online retailer sells five different products whose retail prices are
shown in the following table:

Product number Retail price

1 $2.98
2 $ 4.50
3 $9.98
4 $ 4.49
5 $6.87

154 Chapter 4 C Program Control

Write a program that reads a series of pairs of numbers as follows:

a) Product number

b) Quantity sold for one day
Your program should use a switch statement to help determine the retail price for each product.
Your program should calculate and display the total retail value of all products sold last week.

4.20 (Truth Tables) Complete the following truth tables by filling in each blank with 0 or 1.

Condition| Condition2 Condition| && Condition2

0 0 0

0 nonzero 0
nonzero 0 _
nonzero nonzero

Condition] ~ Condition2 ~ Condition! | | Condition2

0 0

0 nonzero 1

nonzero 0

nonzero nonzero
Condition| I Condition|
0 1
nonzero

4.21 Rewrite the program of Fig. 4.2 so that the initialization of the variable counter is done in
the definition rather than in the for statement.

4.22 (Average Grade) Modify the program of Fig. 4.7 so that it calculates the average grade for
the class.

4.23 (Calculating the Compound Interest with Integers) Modify the program of Fig. 4.6 so that
it uses only integers to calculate the compound interest. [Hinz: Treat all monetary amounts as inte-
gral numbers of pennies. Then “break” the result into its dollar portion and cents portion by using
the division and remainder operations, respectively. Insert a period.]

4.24 Assumedi=1,7 =2, k=3andm=2. What does each of the following statements print?

a) printf(L io==1);

b) printf(, 3 ==3);

c) printf(, 0= 1 & G < 4),

d) printf(, m< = && k < m);

e) printf(, je>=d || k=m);

f) printf(s k+m<i || 3 -3 >=k);
g) printf(, Im);

h) printf(, MG -m)D;

1) printf(L 1Ck>m));

) printf(» 1CT > k))

Exercises 155

4.25 (Table of Decimal, Binary, Octal and Hexadecimal Equivalents) Write a program that
prints a table of the binary, octal and hexadecimal equivalents of the decimal numbers in the range
1 through 256. If you’re not familiar with these number systems, read Appendix C before you at-
tempt this exercise. [[Voze: You can display an integer as an octal or hexadecimal value with the con-
version specifiers %o and %X, respectively.]

4.26 (Calculating the Value of 7t) Calculate the value of T from the infinite series

Print a table that shows the value of T approximated by one term of this series, by two terms, by
three terms, and so on. How many terms of this series do you have to use before you first get 3.14?

3.1412 3.1415? 3.141592

4.27 (Pythagorean Triples) A right triangle can have sides that are all integers. The set of three
integer values for the sides of a right triangle is called a Pythagorean triple. These three sides must
satisfy the relationship that the sum of the squares of two of the sides is equal to the square of the
hypotenuse. Find all Pythagorean triples for sidel, side2, and the hypotenuse all no larger than 500.
Use a triple-nested for loop that simply tries all possibilities. This is an example of “brute-force”
computing. It’s not aesthetically pleasing to many people. But there are many reasons why these
techniques are important. First, with computing power increasing at such a phenomenal pace, so-
lutions that would have taken years or even centuries of computer time to produce with the tech-
nology of just a few years ago can now be produced in hours, minutes or even seconds. Recent
microprocessor chips can process a billion instructions per second! Second, as you’ll learn in more
advanced computer science courses, there are large numbers of interesting problems for which
there’s no known algorithmic approach other than sheer brute force. We investigate many kinds of
problem-solving methodologies in this book. We’'ll consider many brute-force approaches to vari-
ous interesting problems.

4.28 (Calculating Weekly Pay) A company pays its employees as managers (who receive a fixed
weekly salary), hourly workers (who receive a fixed hourly wage for up to the first 40 hours they
work and “time-and-a-half”—i.e., 1.5 times their hourly wage—for overtime hours worked), com-
mission workers (who receive $250 plus 5.7% of their gross weekly sales), or pieceworkers (who re-
ceive a fixed amount of money for each of the items they produce—each pieceworker in this
company works on only one type of item). Write a program to compute the weekly pay for each
employee. You do not know the number of employees in advance. Each type of employee has its
own pay code: Managers have paycode 1, houtly workers have code 2, commission workers have
code 3 and pieceworkers have code 4. Use a switch to compute each employee’s pay based on that
employee’s paycode. Within the switch, prompt the user (i.e., the payroll clerk) to enter the appro-
priate facts your program needs to calculate each employee’s pay based on that employee’s paycode.
[Note: You can input values of type double using the conversion specifier %1f with scanf.]

4.29 (De Morgan’s Laws) In this chapter, we discussed the logical operators &&, ||, and !. De
Morgan’s Laws can sometimes make it more convenient for us to express a logical expression. These
laws state that the expression ! (conditionl & condition2) is logically equivalent to the expression
(! conditionl || condition2). Also, the expression ! (conditionl || condition2) is logically equivalent
to the expression (! conditionl && ! condition2). Use De Morgan’s Laws to write equivalent expres-
sions for each of the following, and then write a program to show that both the original expression
and the new expression in each case are equivalent.
a) 1(x<5)& I(y>7)
b) 1Ca==b) || ICg!=5)
O I (x<=8)8& (y>*4)
)

)
d) 1CCi>a) | (<=)

156 Chapter 4 C Program Control

4.30 (Replacing switch with if...else) Rewrite the program of Fig. 4.7 by replacing the switch
statement with a nested i f...e1se statement; be careful to deal with the default case properly. Then
rewrite this new version by replacing the nested if...else statement with a series of if statements;
here, too, be careful to deal with the default case properly (this is more difficult than in the nested
if...else version). This exercise demonstrates that switch is a convenience and that any switch
statement can be written with only single-selection statements.

4.31 (Diamond-Printing Program) Write a program that prints the following diamond shape.
You may use printf statements that print either a single asterisk (*) or a single blank. Maximize
your use of repetition (with nested for statements) and minimize the number of printf statements.

4.32 (Modified Diamond-Printing Program) Modify the program you wrote in Exercise 4.31 to
read an odd number in the range 1 to 19 to specify the number of rows in the diamond. Your pro-
gram should then display a diamond of the appropriate size.

4.33 (Roman-Numeral Equivalent of Decimal Values) Write a program that prints a table of all
the Roman numeral equivalents of the decimal numbers in the range 1 to 100.

4.34 Describe the process you would use to replace a do...while loop with an equivalent while
loop. What problem occurs when you try to replace a while loop with an equivalent do...while
loop? Suppose you have been told that you must remove a while loop and replace it with a
do...while. What additional control statement would you need to use and how would you use it to
ensure that the resulting program behaves exactly as the original?

4.35 A criticism of the break statement and the continue statement is that each is unstructured.
Actually, break statements and continue statements can always be replaced by structured state-
ments, although doing so can be awkward. Describe in general how you would remove any break
statement from a loop in a program and replace that statement with some structured equivalent.
[Hint: The break statement leaves a loop from within the body of the loop. The other way to leave
is by failing the loop-continuation test. Consider using in the loop-continuation test a second test
that indicates “early exit because of a ‘break’ condition.”] Use the technique you developed here to
remove the break statement from the program of Fig. 4.11.

4.36 What does the following program segment do?

1 for (i=1;14 <=5; ++1) {
2 for (j=1; 3 <=2; ++3) {
3 for (k= 1; k <= 4; ++k)
4 printf(s);
5 puts();

6 }

7 puts();

8 }

Making a Difference 157

4.37 Describe in general how you would remove any continue statement from a loop in a pro-
gram and replace that statement with some structured equivalent. Use the technique you developed
here to remove the continue statement from the program of Fig. 4.12.

4.38 (“The Twelve Days of Christmas” Song) Write a program that uses repetition and switch
statements to print the song “The Twelve Days of Christmas.” One switch statement should be
used to print the day (i.e., “first,” “second,” etc.). A separate switch statement should be used to
print the remainder of each verse.

Making a Difference

4.39 (World Population Growth) World population has grown considerably over the centuries.
Continued growth could eventually challenge the limits of breathable air, drinkable water, arable
cropland and other limited resources. There’s evidence that growth has been slowing in recent years
and that world population could peak some time this century, then start to decline.

For this exercise, research world population growth issues online. Be sure to investigate various
viewpoints. Get estimates for the current world population and its growth rate (the percentage by
which it’s likely to increase this year). Write a program that calculates world population growth
each year for the next 75 years, using the simplifying assumption that the current growth rate will stay
constant. Print the results in a table. The first column should display the year from year 1 to year
75. The second column should display the anticipated world population at the end of that year.
The third column should display the numerical increase in the world population that would occur
that year. Using your results, determine the year in which the population would be double what it
is today, if this year’s growth rate were to persist.

4.40 (Tax Plan Alternatives; The “FairTax”) There are many proposals to make taxation fairer.
Check out the FairTax initiative in the United States at

www. fairtax.org/site/PageServer?pagename=calculator

Research how the proposed FairTax works. One suggestion is to eliminate income taxes and most
other taxes in favor of a 23% consumption tax on all products and services that you buy. Some
FairTax opponents question the 23% figure and say that because of the way the tax is calculated, it
would be more accurate to say the rate is 30%—check this carefully. Write a program that prompts
the user to enter expenses in various categories (e.g., housing, food, clothing, transportation, edu-
cation, health care, vacations), then prints the estimated FairTax that person would pay.

www.fairtax.org/site/PageServer?pagename=calculator

Form ever follows function.

—Louis Henri Sullivan

O! call back yesterday, bid time
return.
—Wiilliam Shakespeare

Answer me in one word.
—Wiilliam Shakespeare

There is a point at which
methods devour themselves.
—Frantz Fanon

Objectives
In this chapter, you'll:

m Construct programs
modularly from small pieces
called functions.

Use common math functions
in the C standard library.

Create new functions.

Use the mechanisms that
pass information between
functions.

Learn how the function call/
return mechanism is
supported by the function
call stack and stack frames.

Use simulation techniques
based on random number
generation.

= Write and use functions that
call themselves.

5.1 Introduction 159

5.1 Introduction 5.10 Random Number Generation
5.2 Program Modules in C 5.11 Example: A Game of Chance
5.3 Math Library Functions 5.12 Storage Classes
5.4 Functions 5.13 Scope Rules
5.5 Function Definitions 5.14 Recursion
5.6 Function Prototypes: A Deeper Look 5.15 Example Using Recursion: Fibonacci
5.7 Function Call Stack and Stack Frames Series
5.8 Headers 5.16 Recursion vs. Iteration
5.9 Passing Arguments By Valueand By ~ 5.17 Secure C Programming
Reference

Summary | Terminology | Self-Review Exercises | Answers to Self-Review Exercises | Exercises
Making a Difference

5.1 Introduction

Most computer programs that solve real-world problems are much larger than the pro-
grams presented in the first few chapters. Experience has shown that the best way to de-
velop and maintain a large program is to construct it from smaller pieces or modules, each
of which is more manageable than the original program. This technique is called divide
and conquer. This chapter describes some key features of the C language that facilitate the
design, implementation, operation and maintenance of large programs.

5.2 Program Modules in C

Modules in C are called functions. C programs are typically written by combining new
functions you write with prepackaged functions available in the C standard library. We dis-
cuss both kinds of functions in this chapter. The C standard library provides a rich collec-
tion of functions for performing common mathematical calculations, string manipulations,
character manipulations, input/output, and many other useful operations. This makes your
job easier, because these functions provide many of the capabilities you need.

" Familiarize yourself with the rich collection of functions in the C standard library.

% E Good Programming Practice 5.1

Software Engineering Observation 5.1
Avoid reinventing the wheel. When possible, use C standard library functions instead of
=25 writing new functions. This can reduce program development time.

Portability Tip 5.1
Zg Using the functions in the C standard library helps make programs more portable.
(X

The C language and the standard library are both specified by the C standard, and
they’re both provided with standard C systems (with the exception that some of the

160 Chapter 5 C Functions

libraries are designated as optional). The functions printf, scanf and pow that we’ve used
in previous chapters are standard library functions.

You can write functions to define specific tasks that may be used at many points in a
program. These are sometimes referred to as programmer-defined functions. The actual
statements defining the function are written only once, and the statements are hidden
from other functions.

Functions are invoked by a function call, which specifies the function name and pro-
vides information (as arguments) that the function needs to perform its designated task. A
common analogy for this is the hierarchical form of management. A boss (the calling func-
tion or caller) asks a worker (the called function) to perform a task and report back when
the task is done (Fig. 5.1). For example, a function needing to display information on the
screen calls the worker function printf to perform that task, then printf displays the infor-
mation and reports back—or returns—to the calling function when its task is completed.
The boss function does 7oz know how the worker function performs its designated tasks. The
worker may call other worker functions, and the boss will be unaware of this. We'll soon see
how this “hiding” of implementation details promotes good software engineering. Figure 5.1
shows a boss function communicating with several worker functions in a hierarchical
manner. Note that Worker1 acts as a boss function to worker4 and worker5. Relationships
among functions may differ from the hierarchical structure shown in this figure.

Boss
Workerl Worker2 Worker3
Worker4 Worker5
Fig. 5.1 | Hierarchical boss-function/worker-function relationship.

5.3 Math Library Functions

Math library functions allow you to perform certain common mathematical calculations.
We use some of them here to introduce the concept of functions. Later in the book, well
discuss many of the other functions in the C standard library.

Functions are normally used in a program by writing the name of the function
followed by a left parenthesis followed by the argument (or a comma-separated list of
arguments) of the function followed by a right parenthesis. For example, to calculate and
print the square root of 900.0 you might write

printf(, sqrt() Di

When this statement executes, the math library function sqrt is called to calculate the square
root of the number contained in the parentheses (900.0). The number 900.0 is the argument
of the sqrt function. The preceding statement would print 30.00. The sqrt function takes

5.3 Math Library Functions 161

an argument of type double and returns a result of type double. All functions in the math
library that return floating-point values return the data type double. Note that double val-
ues, like float values, can be output using the %f conversion specification.

p

=~ Error-Prevention Tip 5.1

Include the math header by using the preprocessor directive #include <math.h> when
using functions in the math library.

Function arguments may be constants, variables, or expressions. If 1 =13.0,d =3.0
and f = 4.0, then the statement
printf(, sqrtC cl +d *));

calculates and prints the square root of 13.0 + 3.0 * 4.0 = 25.0, namely 5.00.

Figure 5.2 summarizes a small sample of the C math library functions. In the figure,
the variables x and y are of type double. The C11 standard adds a wide range of floating-
point and complex-number capabilities.

sqrt(x) square root of x sqrt() is 30.0
sqrt() is 3.0
cbrt(x) cube root of x (C99 and C11 only) cbrt() is 3.0
cbrt() is -2.0
exp(X) exponential function ¢ exp() is 2.718282
exp() is 7.389056
Tog(x) natural logarithm of x (base ¢) Tog()is1.0
Tog()is 2.0
Tog10(x) logarithm of x (base 10) Tog10() is 0.0
Tog10()is1.0
Tog10()is 2.0
fabs(x) absolute value of x as a floating-point fabs () is 13.5
number fabs () is 0.0
fabs() is 13.5
ceil(x) rounds x to the smallest integer not less ceil() is 10.0
than x ceil() is-9.0
floor(x) rounds x to the largest integer not floor() is 9.0
greater than x floor() is -10.0
pow(X, y) x raised to power y (x*) pow(2, 7)is128.0
pow(9,) is 3.0
fmod(x, y) remainder of x/ 'y asa ﬂoating—point fmod (,) is 1.992
number
sin(x) trigonometric sine of x (x in radians) sin()is 0.0
cos(x) trigonometric cosine of x (x in radians) cos()is1.0
tan(x) trigonometric tangent of x (x in radians) tan() is 0.0

Fig. 5.2 | Commonly used math library functions.

162 Chapter 5 C Functions

5.4 Functions

Functions allow you to modularize a program. All variables defined in function definitions
are local variables—they can be accessed only in the function in which they’re defined.
Most functions have a list of parameters that provide the means for communicating infor-
mation between functions. A function’s parameters are also local variables of that function.

Software Engineering Observation 5.2

In programs containing many functions, main is often implemented as a group of calls to
Jfunctions that perform the bulk of the program’s work.

There are several motivations for “functionalizing” a program. The divide-and-con-
quer approach makes program development more manageable. Another motivation is
software reusability—using existing functions as building blocks to create new programs.
Software reusability is a major factor in the object-oriented programming movement that
you'll learn more about when you study languages derived from C, such as C++, Java and
C# (pronounced “C sharp”). With good function naming and definition, programs can
be created from standardized functions that accomplish specific tasks, rather than being
built by using customized code. This is known as abstraction. We use abstraction each
time we use standard library functions like printf, scanf and pow. A third motivation is
to avoid repeating code in a program. Packaging code as a function allows the code to be
executed from other locations in a program simply by calling the function.

Software Engineering Observation 5.3
Each function should be limited to performing a single, well-defined task, and the
Jfunction name should express that task. This facilitates abstraction and promotes software

reusability.

Software Engineering Observation 5.4

If you cannot choose a concise name that expresses what the function does, it'’s possible that
your function is attempting to perform too many diverse tasks. It’s usually best to break
such a function into several smaller functions—this is sometimes called decomposition.

5.5 Function Definitions

Each program we’ve presented has consisted of a function called main that called standard
library functions to accomplish its tasks. We now consider how to write custom functions.
Consider a program that uses a function square to calculate and print the squares of the
integers from 1 to 10 (Fig. 5.3).

// Fig. 5.3: fig05_03.c
// Creating and using a programmer-defined function.
#include <stdio.h>

int square(int y); // function prototype

NUNHh WN -

Fig. 5.3 | Creating and using a programmer-defined function. (Part I of 2.)

5.5 Function Definitions 163

7 // function main begins program execution
8 int main(void)

9 {

10 int x; // counter

11

12 // loop 10 times and calculate and output square of x each time
13 for (x = 1; X <= po+x) {

14 printf(, square(x)); // function call
15 } // end for

16

17 puts();

18 } // end main

19

20 // square function definition returns the square of its parameter
21 1int square(int y) // y is a copy of the argument to the function
22 {

23 return y * y; // returns the square of y as an int

24 } // end function square

1 4 9 16 25 36 49 64 81 100

Fig. 5.3 | Creating and using a programmer-defined function. (Part 2 of 2.)

Function square is invoked or called in main within the printf statement (line 14)
printf(, square(x)); // function call

Function square receives a copy of the value of x in the parameter y (line 21). Then square
calculates y * y. The result is passed back returned to function printf in main where
square was invoked (line 14), and printf displays the result. This process is repeated 10
times using the for statement.

The definition of function square (lines 21-24) shows that square expects an integer
parameter y. The keyword int preceding the function name (line 21) indicates that
square rerurns an integer result. The return statement in square passes the value of the
expression y * y (that is, the result of the calculation) back to the calling function.

Line 5

int square(int y); // function prototype

is a function prototype. The int in parentheses informs the compiler that square expects

to recefve an integer value from the caller. The int to the /gff of the function name square

informs the compiler that square rezurns an integer result to the caller. The compiler refers

to the function prototype to check that any calls to square (line 14) contain the correct

return type, the correct number of arguments and the correct argument types, and that the ar-

guments are in the correct order. Function prototypes are discussed in detail in Section 5.6.
The format of a function definition is

return-value-type function-name(parameter-list)

definitions
statements

164 Chapter 5 C Functions

The function-name is any valid identifier. The rezurn-value-rype is the data type of the re-
sult returned to the caller. The rerurn-value-type void indicates that a function does nor
return a value. Together, the return-value-type, function-name and parameter-list are some-
times referred to as the function header.

Error-Prevention Tip 5.2
Check that your functions that are supposed to return values do so. Check that your func-
tions that are not supposed to return values do not.

The parameter-list is a comma-separated list that specifies the parameters received by
the function when it’s called. If a function does not receive any values, parameter-list is
void. A type must be listed explicitly for each parameter.

Common Programming Error 5.1
& Specifying function parameters of the same type as double x, y instead of double x, dou-
; ble y results in a compilation error.

Common Programming Error 5.2
Placing a semicolon after the right parenthesis enclosing the parameter list of a function
definition is a syntax error.

Common Programming Error 5.3
Defining a parameter again as a local variable in a function is a compilation error.

Although it's not incorrect to do so, do not use the same names for a function’s arguments
and the corresponding parameters in the function definition. This helps avoid ambiguity.

r«g ET Good Programming Practice 5.2

The definitions and statements within braces form the function body, which is also
referred to as a block. Variables can be declared in any block, and blocks can be nested.

Common Programming Error 5.4
Defining a function inside another function is a syntax error.

. Good Programming Practice 5.3
Choosing meaningful function names and meaningful parameter names makes programs
more readable and helps avoid excessive use of comments.

Software Engineering Observation 5.5
Small functions promote software reusability.

Software Engineering Observation 5.6
Programs should be written as collections of small functions. This makes programs easier
to write, debug, maintain and modify.

5.5 Function Definitions 165

Software Engineering Observation 5.7

A function requiring a large number of parameters may be performing too many tasks.
Consider dividing the function into smaller functions that perform the separate tasks. The
Jfunction header should fit on one line if possible.

Software Engineering Observation 5.8

The function prototype, function header and function calls should all agree in the number,
type, and order of arguments and parameters, and in the type of return value.

There are three ways to return control from a called function to the point at which a
function was invoked. If the function does 7or return a result, control is returned simply
when the function-ending right brace is reached, or by executing the statement

return;
If the function does return a result, the statement
return expression;

returns the value of expression to the caller.

main’s Return Type
Notice that main has an int return type. The return value of main is used to indicate
whether the program executed correctly. In eatlier versions of C, we’d explicitly place

return 0;

at the end of main—o0 indicates that a program ran successfully. The C standard indicates
that main implicitly returns 0 if you to omit the preceding statement—as we’ve done
throughout this book. You can explicitly return non-zero values from main to indicate that
a problem occured during your program’s execution. For information on how to report a
program failure, see the documentation for your particular operating-system environment.

Function maximum

Our second example uses a programmer-defined function maximum to determine and re-
turn the largest of three integers (Fig. 5.4). The integers are input with scanf (line 15).
Next, they’re passed to maximum (line 19), which determines the largest integer. This value
is returned to main by the return statement in maximum (line 36). The value returned is
then printed in the printf statement (line 19).

// Fig. 5.4: fig05_04.c
// Finding the maximum of three integers.
#include <stdio.h>

int maximum(int x, int y, int z); // function prototype
// function main begins program execution

int main(void)

{

VO ~NGONUND WN -

Fig. 5.4 | Finding the maximum of three integers. (Part | of 2.)

166 Chapter 5 C Functions

10 int numberl; // first integer entered by the user
11 int number2; // second integer entered by the user
12 int number3; // third integer entered by the user
13

14 printf(s);

15 scanf(, &numberl, &number2, &number3);
16

17 // numberl, number2 and number3 are arguments

18 // to the maximum function call

19 printf(, maximum(numberl, number2, number3));
20 1} // end main

21

22 // Function maximum definition
23 // x, y and z are parameters
24 int maximum(int x, int y, int z)

25 {

26 int max = x; // assume x is largest

27

28 if Cy>max) { // if y is larger than max,
29 max = y; // assign y to max

30 } // end if

31

32 if Cz>max) { // if z is larger than max,
33 max = z; // assign z to max

34 } // end if

35

36 return max; // max is largest value

37 1} // end function maximum

Enter three integers: 22 85 17
Maximum is: 85

Enter three integers: 47 32 14
Maximum is: 47

Enter three integers: 35 8 79
Maximum is: 79

Fig. 5.4 | Finding the maximum of three integers. (Part 2 of 2.)

5.6 Function Prototypes: A Deeper Look

An important feature of C is the function prototype. This feature was borrowed from C++.
The compiler uses function prototypes to validate function calls. Early versions of C did
not perform this kind of checking, so it was possible to call functions improperly without
the compiler detecting the errors. Such calls could result in fatal execution-time errors or
nonfatal errors that caused subtle, difficult-to-detect problems. Function prototypes cor-
rect this deficiency.

5.6 Function Prototypes: A Deeper Look 167

Include function prototypes for all functions to take advantage of C's type-checking ca-
pabilities. Use #include preprocessor directives to obtain function prototypes for the stan-
dard library functions from the headers for the appropriate libraries, or to obtain headers
containing function prototypes for functions developed by you and/or your group members.

% E Good Programming Practice 5.4

The function prototype for maximum in Fig. 5.4 (line 5) is
int maximum(int x, int y, int z); // function prototype

It states that maximum takes three arguments of type int and returns a result of type int.
Notice that the function prototype is the same as the first line of maximum’s definition.

a7+ Good Programming Practice 5.5
¢ \ Parameter names are sometimes included in function prototypes (our preference) for doc-
umentation purposes. The compiler ignores these names.

3 Forgetting the semicolon at the end of a function prototype is a syntax error.

. % ? Common Programming Error 5.5

Compilation Errors

A function call that does not match the function prototype is a compilation error. An error
is also generated if the function prototype and the function definition disagree. For exam-
ple, in Fig. 5.4, if the function prototype had been written

void maximum(int x, int y, int z);

the compiler would generate an error because the void return type in the function proto-
type would differ from the int return type in the function header.

Argument Coercion and “Usual Arithmetic Conversion Rules”

Another important feature of function prototypes is the coercion of arguments, i.e., the
forcing of arguments to the appropriate type. For example, the math library function sqrt
can be called with an integer argument even though the function prototype in <math.h>
specifies a double parameter, and the function will still work correctly. The statement

printf(, sqrt())

correctly evaluates sqrt(4) and prints the value 2.000. The function prototype causes the
compiler to convert a capy of the integer value 4 to the double value 4.0 before the copy is
passed to sqrt. In general, argument values that do not correspond precisely ro the parameter
types in the function prototype are converted to the proper type before the function is called.
These conversions can lead to incorrect results if C’s usual arithmetic conversion rules are
not followed. These rules specify how values can be converted to other types without los-
ing data. In our sqrt example above, an int is automatically converted to a double with-
out changing its value (because double can represent a much larger range of values than
int). However, a double converted to an int truncates the fractional part of the double
value, thus changing the original value. Converting large integer types to small integer
types (e.g., Tong to short) may also result in changed values.

The usual arithmetic conversion rules automatically apply to expressions containing
values of two data types (also referred to as mixed-type expressions), and are handled for

168 Chapter 5 C Functions

you by the compiler. In a mixed-type expression, the compiler makes a temporary copy of
the value that needs to be converted then converts the copy to the “highest” type in the
expression—the original value remains unchanged. The usual arithmetic conversion rules
for a mixed-type expression containing at least one floating-point value are:

¢ If one of the values is a Tong doube, the other is converted to a Tong doubTe.
¢ If one of the values is a doub1e, the other is converted to a double.
e If one of the values is a float, the other is converted to a float.

If the mixed-type expression contains only integer types, then the usual arithmetic conver-
sions specify a set of integer promotion rules. In most cases, the integer types lower in
Fig. 5.5 are converted to types higher in the figure. Section 6.3.1 of the C standard doc-
ument specifies the complete details of arithmetic operands and the usual arithmetic con-
version rules. Figure 5.5 lists the floating-point and integer data types with each type’s
printf and scanf conversion specifications.

printf conversion scanf conversion
Data type specification specification
Floating-point types
long doubTle %LT %LT
double %t %1f
float %f %f
Integer types
unsigned long long 1int %11u %11u
Tong Tlong int %11d %11d
unsigned Tong 1int %1u %1u
long int %1d %1d
unsigned int %u %u
int %d %d
unsigned short %hu %hu
short %hd %hd
char %c %c

Fig. 5.5 | Arithmetic data types and their conversion specifications.

Converting values to lower types in Fig. 5.5 can result in incorrect values, so the com-
piler typically issues warnings for such cases. A value can be converted to a lower type only
by explicitly assigning the value to a variable of lower type or by using a casz operator. Argu-
ments in a function call are converted to the parameter types specified in a function proto-
type as if the arguments were being assigned directly to variables of those types. If our square
function that uses an int parameter (Fig. 5.3) is called with a floating-point argument, the
argument is converted to int (a lower type), and square usually returns an incorrect value.
For example, square(4.5) returns 16, not 20.25.

5.7 Function Call Stack and Stack Frames 169

Converting from a higher data type in the promotion hierarchy to a lower type can change
the data value. Many compilers issue warnings in such cases.

: % ? Common Programming Error 5.6

If there’s no function prototype for a function, the compiler forms its own function
prototype using the first occurrence of the function—either the function definition or a
call to the function. This typically leads to warnings or errors, depending on the compiler.

% Error-Prevention Tip 5.3

Always include function prototypes for the functions you define or use in your program to
help prevent compilation errors and warnings.

Software Engineering Observation 5.9
A function prototype placed outside any function definition applies to all calls ro the
function appearing after the function prototype in the file. A function prototype placed in
a function applies only to calls made in that function.

5.7 Function Call Stack and Stack Frames

To understand how C performs function calls, we first need to consider a data structure
(i.e., collection of related data items) known as a stack. Think of a stack as analogous to a
pile of dishes. When a dish is placed on the pile, it’s normally placed at the zop (referred to
as pushing the dish onto the stack). Similarly, when a dish is removed from the pile, it’s
normally removed from the 7op (referred to as popping the dish off the stack). Stacks are
known as last-in, first-out (LIFO) data structures—the Jast item pushed (inserted) on the
stack is the firsz item popped (removed) from the stack.

An important mechanism for computer science students to understand is the function
call stack (sometimes referred to as the program execution stack). This data structure—
working “behind the scenes”™—supports the function call/return mechanism. It also sup-
ports the creation, maintenance and destruction of each called function’s automatic vari-
ables. We explained the last-in, first-out (LIFO) behavior of stacks with our dish-stacking
example. As we'll see in Figs. 5.7-5.9, this LIFO behavior is exactly what a function does
when returning to the function that called it.

As each function is called, it may call other functions, which may call other func-
tions—all before any function returns. Each function eventually must return control to the
function that called it. So, we must keep track of the return addresses that each function
needs to return control to the function that called it. The function call stack is the perfect
data structure for handling this information. Each time a function calls another function,
an entry is pushed onto the stack. This entry, called a stack frame, contains the resurn
address that the called function needs in order to return to the calling function. It also con-
tains some additional information we’ll soon discuss. If the called function returns, instead
of calling another function before returning, the stack frame for the function call is popped,
and control transfers to the return address in the popped stack frame.

Each called function afways finds the information it needs to return to its caller at the
top of the call stack. And, if a function makes a call to another function, a stack frame for the
new function call is simply pushed onto the call stack. Thus, the return address required by
the newly called function to return to its caller is now located at the zp of the stack.

170 Chapter 5 C Functions

The stack frames have another important responsibility. Most functions have auto-
matic variable—parameters and some or all of their local variables. Automatic variables
need to exist while a function is executing. They need to remain active if the function
makes calls to other functions. But when a called function returns to its caller, the called
function’s automatic variables need to “go away.” The called function’s stack frame is a
perfect place to reserve the memory for automatic variables. That stack frame exists only
as long as the called function is active. When that function returns—and no longer needs
its local automatic variables—its stack frame is popped from the stack, and those local auto-
matic variables are no longer known to the program.

Of course, the amount of memory in a computer is finite, so only a certain amount
of memory can be used to store stack frames on the function call stack. If more function
calls occur than can have their stack frames stored on the function call stack, a fazal error
known as stack overflow occurs.

Function Call Stack in Action

Now let’s consider how the call stack supports the operation of a square function called
by main (lines 813 of Fig. 5.6). First the operating system calls main—this pushes a stack
frame onto the stack (shown in Fig. 5.7). The stack frame tells main how to return to the
operating system (i.e., transfer to return address R1) and contains the space for main’s au-
tomatic variable (i.e., a, which is initialized to 10).

Function main—before returning to the operating system—now calls function
square in line 12 of Fig. 5.6. This causes a stack frame for square (lines 16-19) to be
pushed onto the function call stack (Fig. 5.8). This stack frame contains the return address
that square needs to return to main (i.e., R2) and the memory for square’s automatic vari-

able (i.e., x).

1 // Fig. 5.6: fig05_06.c

2 // Demonstrating the function call stack

3 // and stack frames using a function square.

4 #include <stdio.h>

5

6 int square(int); // prototype for function square

7

8 int mainQ

9 {

10 int a = ; // value to square (local automatic variable in main)
11

12 printf(, a, square(a)); // display a squared
13 } // end main

14

15 // returns the square of an integer

16 int square(int x) // x is a local variable

17 {

18 return x * x; // calculate square and return result
19 } // end function square

10 squared: 100

Fig. 5.6 | Demonstrating the function call stack and stack frames using a function square.

5.7 Function Call Stack and Stack Frames 171

Step I: Operating system invokes main to execute application

int mainQ

Operating system

Return location R1

Function call stack after Step |

Top of stack

Stack frame

for function main
Key

Lines that represent the operating
system executing instructions

Fig. 5.7 | Function call stack after the operating system invokes main to execute the program.

Step 2: main invokes function square to perform calculation

int main(Q)
— int square(int x)

Return location R2

Function call stack after Step 2

Top of stack

Stack frame for
function square

Stack frame
for function main

Fig. 5.8 | Function call stack after main invokes square to perform the calculation.

172 Chapter 5 C Functions

After square calculates the square of its argument, it needs to return to main—and no
longer needs the memory for its automatic variable x. So the stack is popped—giving
square the return location in main (i.e., R2) and losing square’s automatic variable.
Figure 5.9 shows the function call stack affer square’s stack frame has been popped.

Step 3: square returns its result to main

int mainQ
int square(int x)
{
int a = 10; {
printf("%d squared: %d\n", return x * x;
Return location R2 a, square(a)); }

: T

Function call stack after Step 3

Top of stack ——

Return location: R1

Stack frame Automatic variables:

for function main
a 10 I

Fig. 5.9 | Function call stack after function square returns to main.

Function main now displays the result of calling square (line 12). Reaching the
closing right brace of main causes its stack frame to be popped from the stack, gives main
the address it needs to return to the operating system (i.e., R1 in Fig. 5.7) and causes the
memory for main’s automatic variable (i.e., a) to become unavailable.

You’ve now seen how valuable the stack data structure is in implementing a key mech-
anism that supports program execution. Data structures have many important applica-
tions in computer science. We discuss stacks, queues, lists, trees and other data structures
in Chapter 12.

5.8 Headers

Each standard library has a corresponding header containing the function prototypes for all
the functions in that library and definitions of various data types and constants needed by
those functions. Figure 5.10 lists alphabetically some of the standard library headers that may
be included in programs. The C standard includes additional headers. The term “macros”
that’s used several times in Fig. 5.10 is discussed in detail in Chapter 13.

You can create custom headers. Programmer-defined headers should also use the .h
filename extension. A programmer-defined header can be included by using the #include
preprocessor directive. For example, if the prototype for our square function was located

5.9 Passing Arguments By Value and By Reference 173

Explanation

<assert.h> Contains information for adding diagnostics that aid program debugging.

<ctype.h> Contains function prototypes for functions that test characters for certain prop-
erties, and function prototypes for functions that can be used to convert lower-
case letters to uppercase letters and vice versa.

<errno.h> Defines macros that are useful for reporting error conditions.

<float.h> Contains the floating-point size limits of the system.

<limits.h> Contains the integral size limits of the system.

<locale.h> Contains function prototypes and other information that enables a program to
be modified for the current locale on which it’s running. The notion of locale
enables the computer system to handle different conventions for expressing data
such as dates, times, currency amounts and large numbers throughout the world.

<math.h> Contains function prototypes for math library functions.

<setjmp.h> Contains function prototypes for functions that allow bypassing of the usual
function call and return sequence.

<signal.h> Contains function prototypes and macros to handle various conditions that may
arise during program execution.

<stdarg.h> Defines macros for dealing with a list of arguments to a function whose number
and types are unknown.

<stddef.h> Contains common type definitions used by C for performing calculations.

<stdio.h> Contains function prototypes for the standard input/output library functions,
and information used by them.

<std1ib.h> Contains function prototypes for conversions of numbers to text and text to
numbers, memory allocation, random numbers, and other utility functions.

<string.h> Contains function prototypes for string-processing functions.

<time.h> Contains function prototypes and types for manipulating the time and date.
Fig. 5.10 | Some of the standard library headers.

in the header square.h, we’d include that header in our program by using the following
directive at the top of the program:

#include

Section 13.2 presents additional information on including headers.

5.9 Passing Arguments By Value and By Reference

In many programming languages, there are two ways to pass arguments—pass-by-value
and pass-by-reference. When arguments are passed by value, a copy of the argument’s value
is made and passed to the called function. Changes to the copy do nor affect an original
variable’s value in the caller. When an argument is passed by reference, the caller allows the
called function to modify the original variable’s value.

Pass-by-value should be used whenever the called function does not need to modify
the value of the caller’s original variable. This prevents the accidental side effects (variable

174 Chapter 5 C Functions

modifications) that so greatly hinder the development of correct and reliable software sys-
tems. Pass-by-reference should be used only with srusted called functions that need to
modify the original variable.

In C, all arguments are passed by value. As we’ll see in Chapter 7, it’s possible to sim-
ulate pass-by-reference by using the address operator and the indirection operator. In
Chapter 6, we'll see that array arguments are automatically passed by reference for perfor-
mance reasons. We’'ll see in Chapter 7 that this is 70z a contradiction. For now, we concen-
trate on pass-by-value.

5.10 Random Number Generation

We now take a brief and, hopefully, entertaining diversion into simulation and game play-
ing. In this and the next section, we’ll develop a nicely structured game-playing program
that includes multiple functions. The program uses most of the control statements we’ve
studied. The element of chance can be introduced into computer applications by using the
C standard library function rand from the <std1ib.h> header.

Consider the following statement:

i = randQ);

The rand function generates an integer between 0 and RAND_MAX (a symbolic constant de-
fined in the <std1ib.h> header). Standard C states that the value of RAND_MAX must be at
least 32767, which is the maximum value for a two-byte (i.e., 16-bit) integer. The pro-
grams in this section were tested on Microsoft Visual C++ with a maximum RAND_MAX val-
ue of 32767 and on GNU gcc with a maximum RAND_MAX value of 2147483647. If rand
truly produces integers ar random, every number between 0 and RAND_MAX has an equal
chance (or probability) of being chosen each time rand is called.

The range of values produced directly by rand is often different from what’s needed
in a specific application. For example, a program that simulates coin tossing might require
only 0 for “heads” and 1 for “tails.” A dice-rolling program that simulates a six-sided die
would require random integers from 1 to 6.

Rolling a Six-Sided Die

To demonstrate rand, let’s develop a program to simulate 20 rolls of a six-sided die and
print the value of each roll. The function prototype for function rand is in <std1ib.h>.
We use the remainder operator (%) in conjunction with rand as follows

rand() %

to produce integers in the range 0 to 5. This is called scaling. The number 6 is called the
scaling factor. We then shift the range of numbers produced by adding 1 to our previous
result. The output of Fig. 5.11 confirms that the results are in the range 1 to 6—the actual
random values chosen might vary by compiler.

// Fig. 5.11: fig05_11.c

// Shifted, scaled random integers produced by 1 + rand() % 6.
#include <stdio.h>

#include <stdlib.h>

B WN -

Fig. 5.11 | Shifted, scaled random integers produced by 1 + rand() % 6. (Part | of 2.)

5.10 Random Number Generation 175

5

6 // function main begins program execution

7 int main(void)

8 {

9 unsigned 1int i; // counter

10

11 // loop 20 times

12 for (1 =1;1 <= o+) {

13

14 // pick random number from 1 to 6 and output it
15 printf(s + CrandQ) % 6));

16

17 // if counter is divisible by 5, begin new Tine of output
18 if (1% 5 ==0){

19 puts();

20 } // end if

21 } // end for

22 } // end main

NO RO
WN R UV

(o)l WV, le))
> ph oo
H N WO

Fig. 5.11 | Shifted, scaled random integers produced by 1 + rand() % 6. (Part 2 of 2.)

Rolling a Six-Sided Die 6,000,000 Times

To show that these numbers occur approximately with equal likelihood, let’s simulate
6,000,000 rolls of a die with the program of Fig. 5.12. Each integer from 1 to 6 should
appear approximately 1,000,000 times.

1 // Fig. 5.12: fig05_12.c

2 // Rolling a six-sided die 6,000,000 times.

3 #include <stdio.h>

4 #include <stdlib.h>

5

6 // function main begins program execution

7 int main(void)

8 {

9 unsigned int frequencyl = 0; // rolled 1 counter

10 unsigned int frequency2 = 0; // rolled 2 counter

11 unsigned int frequency3 = 0; // rolled 3 counter

12 unsigned int frequency4 = 0; // rolled 4 counter

13 unsigned int frequency5 = 0; // rolled 5 counter

14 unsigned int frequency6 = 0; // rolled 6 counter

15

16 unsigned int roll; // roll counter, value 1 to 6000000
17 int face; // represents one roll of the die, value 1 to 6

Fig. 5.12 | Rolling a six-sided die 6,000,000 times. (Part | of 2.)

176 Chapter 5 C Functions

18

19 // Toop 6000000 times and summarize results
20 for (roll = 1; roll <= ;o ++roll) {
21 face = 1 + rand() % 6; // random number from 1 to 6
22

23 // determine face value and increment appropriate counter
24 switch (face) {

25

26 case 1: // rolled 1

27 ++frequencyl;

28 break;

29

30 case 2: // rolled 2

31 ++frequency?;

32 break;

33

34 case 3: // rolled 3

35 ++frequency3;

36 break;

37

38 case 4: // rolled 4

39 ++frequency4;

40 break;

41

42 case 5: // rolled 5

43 ++frequency5;

44 break;

45

46 case 6: // rolled 6

47 ++frequency6;

48 break; // optional

49 } // end switch

50 } // end for

51

52 // display results in tabular format

53 printf(, s);
54 printf(, frequencyl);

55 printf(, frequency2);

56 printf(, frequency3);

57 printf(, frequency4);

58 printf(, frequency5);

59 printf(, frequency6);

60 1} // end main

Face Frequency
1 999702
2 1000823
3 999378
4 998898
5 1000777
6 1000422

Fig. 5.12 | Rolling a six-sided die 6,000,000 times. (Part 2 of 2.)

5.10 Random Number Generation 177

As the program output shows, by scaling and shifting we’ve used the rand function to
realistically simulate the rolling of a six-sided die. Note the use of the %s conversion speci-
fier to print the character strings "Face" and "Frequency" as column headers (line 53).
After we study arrays in Chapter 6, we'll show how to replace this 26-line switch state-
ment elegantly with a single-line statement.

Randomizing the Random Number Generator
Executing the program of Fig. 5.11 again produces

NO RO
WN R UV

(o)l WV, le))
e N |
R NWO

Notice that exactly the same sequence of values was printed. How can these be random num-
bers? Ironically, this repeatability is an important characteristic of function rand. When de-
bugging a program, this repeatability is essential for proving that corrections to a program
work properly.

Function rand actually generates pseudorandom numbers. Calling rand repeatedly
produces a sequence of numbers that appears to be random. However, the sequence repeats
itself each time the program is executed. Once a program has been thoroughly debugged,
it can be conditioned to produce a different sequence of random numbers for each execu-
tion. This is called randomizing and is accomplished with the standard library function
srand. Function srand takes an unsigned integer argument and seeds function rand to
produce a different sequence of random numbers for each execution of the program.

We demonstrate function srand in Fig. 5.13. Function srand takes an unsigned int
value as an argument. The conversion specifier %u is used to read an unsigned int value
with scanf. The function prototype for srand is found in <std1ib.h>.

Let’s run the program several times and observe the results. Notice that a different
sequence of random numbers is obtained each time the program is run, provided that a
different seed is supplied.

To randomize without entering a seed each time, use a statement like
srand(time());

This causes the computer to read its clock to obtain the value for the seed automatically.
Function time returns the number of seconds that have passed since midnight on January
1, 1970. This value is converted to an unsigned integer and used as the seed to the random
number generator. The function prototype for time is in <time.h>. We'll say more about
NULL in Chapter 7.

// Fig. 5.13: fig05_13.c

// Randomizing the die-rolling program.
#include <stdlib.h>

#include <stdio.h>

Ndh WN -

Fig. 5.13 | Randomizing the die-rolling program. (Part | of 2.)

178 Chapter 5 C Functions

6 // function main begins program execution

7 int main(void)

8 {

9 unsigned int i; // counter

10 unsigned 1int seed; // number used to seed the random number generator
11

12 printf(y)

13 scanf(, &seed); // note %u for unsigned int

14

15 srand(seed); // seed the random number generator
16

17 // loop 10 times

18 for (1 =1; 1 <= o+) {

19

20 // pick a random number from 1 to 6 and output it
21 printf(s + CrandQ) % 6));

22

23 // if counter is divisible by 5, begin a new 1line of output
24 if (1% 5 ==0){

25 puts();

26 } // end if

27 } // end for

28 1} // end main

Enter seed: 67

6 1 4 6 2

1 6 1 6 4
Enter seed: 867

2 4 6 1 6

1 1 3 6 2
Enter seed: 67

6 1 4 6 2

1 6 1 6 4

Fig. 5.13 | Randomizing the die-rolling program. (Part 2 of 2.)

Generalized Scaling and Shifting of Random Numbers

The values produced directly by rand are always in the range:
< randQ) <
As you know, the following statement simulates rolling a six-sided die:
face = 1 + rand(Q) % ©;

This statement always assigns an integer value (at random) to the variable face in the
range 1 < face < 6. The width of this range (i.e., the number of consecutive integers in
the range) is 6 and the szarting number in the range is 1. Referring to the preceding state-
ment, we see that the width of the range is determined by the number used to scale rand

5.11 Example: A Game of Chance 179

with the remainder operator (i.c., 6), and the starting number of the range is equal to the
number (i.e., 1) that’s added to rand % 6. We can generalize this result as follows:

n=a+ rand() % b;

where a is the shifting value (which is equal to the first number in the desired range of
consecutive integers) and b is the scaling factor (which is equal to the width of the desired
range of consecutive integers). In the exercises, we'll see that it’s possible to choose integers
at random from sets of values other than ranges of consecutive integers.

Common Programming Error 5.7
Using srand in place of rand to generate random numbers.

5.11 Example: A Game of Chance

One of the most popular games of chance is a dice game known as “craps,” which is played
in casinos and back alleys throughout the world. The rules of the game are straightforward:

A player rolls two dice. Each die has six faces. These faces contain 1, 2, 3, 4, 5, and 6
spots. After the dice have come to rest, the sum of the spots on the two upward faces is
calculated. If the sum is 7 or 11 on the first throw, the player wins. If the sum is 2, 3,
or 12 on the first throw (called “craps”), the player loses (i.e., the “house” wins). If the
sum is 4, 5, 6, 8, 9, or 10 on the first throw, then that sum becomes the player’s
‘point.” 1o win, you must continue rolling the dice until you “make your point.” The
player loses by rolling a 7 before making the point.

Figure 5.14 simulates the game of craps and Fig. 5.15 shows several sample executions.

// Fig. 5.14: fig05_14.c

// Simulating the game of craps.

#include <stdio.h>

#include <stdlib.h>

#include <time.h> // contains prototype for function time

// enumeration constants represent game status
enum Status { ; . 13

VoO~NONUND WN -

10 int rollDice(void); // function prototype
11

12 // function main begins program execution
I3 int main(void)

14 {

15 int sum; // sum of rolled dice

16 int myPoint; // player must make this point to win

17

18 enum Status gameStatus; // can contain CONTINUE, WON, or LOST
19

20 // randomize random number generator using current time

21 srand(time());

22

Fig. 5.14 | Simulating the game of craps. (Part | of 3.)

180 Chapter 5 C Functions

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

sum = rollDice(); // first roll of the dice

// determine game status based on sum of dice
switch(sum) {

// win on first roll

case 7: // 7 is a winner

case : // 11 is a winner
gameStatus = ; // game has been won
break;

// Tlose on first roll

case 2: // 2 is a Tloser
case 3: // 3 is a Tloser
case : // 12 is a Toser
gameStatus = ; // game has been lost
break;
// remember point
default:
gameStatus = ; // player should keep rolling
myPoint = sum; // remember the point
printf(, myPoint);

break; // optional
} // end switch

// while game not complete
while (== gameStatus) { // player should keep rolling
sum = rol1Dice(); // roll dice again

// determine game status
if (sum == myPoint) { // win by making point

gameStatus = ; // game over, player won
} // end if
else {
if (7 == sum) { // lose by rolling 7
gameStatus = ; // game over, player lost
} // end if

} // end else
} // end while

// display won or Tost message

if (== gameStatus) { // did player win?
puts();

} // end if

else { // player lost
puts();

} // end else
} // end main

// roll dice, calculate sum and display results
int rol1Dice(void)

{

Fig. 5.14 | Simulating the game of craps. (Part 2 of 3.)

5.11 Example: A Game of Chance 181

76 int diel; // first die

77 int die2; // second die

78 int workSum; // sum of dice

79

80 diel = + (rand(Q) % 6); // pick random diel value
8I die2 = + Crand() % 6); // pick random die2 value
82 workSum = diel + die2; // sum diel and die2

83

84 // display results of this roll

85 printf(, diel, die2, workSum);
86 return workSum; // return sum of dice

87 1} // end function rollRice

Fig. 5.14 | Simulating the game of craps. (Part 3 of 3.)

Player wins on the first roll

PTlayer rolled 5 + 6 = 11
PTayer wins

Player wins on a subsequent roll

Player rolled 4 + 1 =5
Point 1is 5

Player rolled 6 + 2 = 8
Player rolled 2 + 1 = 3
Player rolled 3 + 2 = 5

PTayer wins

Player loses on the first roll

Player rolled 1 + 1 = 2
PTayer Tloses

Player loses on a subsequent roll

PTayer rolled 6 + 4 = 10
Point is 10
Player rolled 3 + 4 = 7

Player Tloses

Fig. 5.15 | Sample runs for the game of craps.

In the rules of the game, notice that the player must roll zwo dice on the first roll, and
must do so later on all subsequent rolls. We define a function ro11Dice to roll the dice
and compute and print their sum. Function ro11Dice is defined once, but ic’s called from
two places in the program (lines 23 and 51). Interestingly, ro11Dice takes no arguments,
so we've indicated void in the parameter list (line 74). Function ro11Dice does return the
sum of the two dice, so a return type of int is indicated in its function header and in its
function prototype.

182 Chapter 5 C Functions

Enumerations

The game is reasonably involved. The player may win or lose on the first roll, or may win
or lose on any subsequent roll. Variable gameStatus, defined to be of a new type—enum
Status—stores the current status. Line 8 creates a programmer-defined type called an
enumeration. An enumeration, introduced by the keyword enum, is a set of integer con-
stants represented by identifiers. Enumeration constants are sometimes called symbolic
constants. Values in an enum start with 0 and are incremented by 1. In line 8, the constant
CONTINUE has the value 0, WON has the value 1 and LOST has the value 2. I’s also possible to
assign an integer value to each identifier in an enum (see Chapter 10). The identifiers in an
enumeration must be unigue, but the values may be duplicated.

Assigning a value to an enumeration constant after it has been defined is a syntax error.

a? Common Programming Error 5.8

a7, Good Programming Practice 5.6
g - Use only uppercase letters in the names of enumeration constants to make these constants
stand out in a program and to indicate that enumeration constants are not variables.

When the game is won, either on the first roll or on a subsequent roll, gameStatus is
set to WON. When the game is lost, either on the first roll or on a subsequent roll, game-
Status is set to LOST. Otherwise gameStatus is set to CONTINUE and the game continues.

Game Ends on First Roll

After the first roll, if the game is over, the while statement (lines 50-62) is skipped because
gameStatus is not CONTINUE. The program proceeds to the if...else statement at lines
65-70, which prints "Player wins" if gameStatus is WON and "Player Toses" otherwise.

Game Ends on a Subsequent Roll

After the first roll, if the game is 7oz over, then sum is saved in myPoint. Execution proceeds
with the while statement because gameStatus is CONTINUE. Each time through the whiTe,
rol1Dice is called to produce a new sum. If sum matches myPoint, gameStatus is set to WON
to indicate that the player won, the while-test fails, the i f...eTse statement prints "Play-
er wins" and execution terminates. If sum is equal to 7 (line 58), gameStatus is set to LOST
to indicate that the player lost, the whiTe-test fails, the i f...e1se statement prints "Player
Toses" and execution terminates.

Control Architecture

Note the program’s interesting control architecture. We've used two functions—main and
ro11Dice—and the switch, while, nested if...el1se and nested i f statements. In the ex-
ercises, we'll investigate various interesting characteristics of the game of craps.

5.12 Storage Classes

In Chapters 2—4, we used identifiers for variable names. The attributes of variables include
name, type, size and value. In this chapter, we also use identifiers as names for user-defined
functions. Actually, each identifier in a program has other attributes, including storage
class, storage duration, scope and linkage.

5.12 Storage Classes 183

C provides the storage class specifiers auto, regi sterl, extern and static.? An

identifier’s storage class determines its storage duration, scope and linkage. An identifier’s
storage duration is the period during which the identifier exiszs in memory. Some exist
briefly, some are repeatedly created and destroyed, and others exist for the program’s entire
execution. An identifier’s scope is where the identifier can be referenced in a program.
Some can be referenced throughout a program, others from only portions of a program.
An identifier’s linkage determines for a multiple-source-file program whether the identi-
fier is known only in the current source file or in any source file with proper declarations.
This section discusses storage classes and storage duration. Section 5.13 discusses scope.
Chapter 14 discusses identifier linkage and programming with multiple source files.

The storage-class specifiers can be split automatic storage duration and static storage
duration. Keyword auto is used to declare variables of automatic storage duration. Variables
with automatic storage duration are created when the block in which they’re defined is
entered; they exist while the block is active, and they’re destroyed when the block is exited.

Local Variables

Only variables can have automatic storage duration. A function’s local variables (those de-
clared in the parameter list or function body) normally have automatic storage duration.
Keyword auto explicitly declares variables of automatic storage duration. Local variables
have automatic storage duration by default, so keyword auto is rarely used. For the remain-
der of the text, we'll refer to variables with automatic storage duration simply as automatic
variables.

; Performance Tip 5.1

> Automatic storage is a means of conserving memory, because automatic variables exist
only when they're needed. Theyre created when a function is entered and destroyed when
the function is exited.

Static Storage Class
Keywords extern and static are used in the declarations of identifiers for variables and
functions of szatic storage duration. Identifiers of static storage duration exist from the time
at which the program begins execution until the program terminates. For static variables,
storage is allocated and initialized only once, before the program begins execution. For func-
tions, the name of the function exists when the program begins execution. However, even
though the variables and the function names exist from the start of program execution, this
does 70r mean that these identifiers can be accessed throughout the program. Storage du-
ration and scope (where a name can be used) are separate issues, as we'll see in Section 5.13.
There are several types of identifiers with static storage duration: external identifiers
(such as global variables and function names) and local variables declared with the storage-
class specifier static. Global variables and function names are of storage class extern by
default. Global variables are created by placing variable declarations owusside any function
definition, and they retain their values throughout the execution of the program. Global
variables and functions can be referenced by any function that follows their declarations

1. Keyword register is archaic and should not be used.
2. The new C standard adds the storage class specifier _Thread_local, which is beyond this booK’s
scope.

184 Chapter 5 C Functions

or definitions in the file. This is one reason for using function prototypes—when we
include stdio.h in a program that calls printf, the function prototype is placed at the
start of our file to make the name printf known to the rest of the file.

Software Engineering Observation 5.10

Defining a variable as global rather than local allows unintended side effects to occur
when a function that does not need access to the variable accidentally or maliciously
modifies it. In general, global variables should be avoided except in certain situations
with unique performance requirements (as discussed in Chapter 14).

Software Engineering Observation 5.1 |
Variables used only in a particular function should be defined as local variables in that
=23 function rather than as external variables.

Local variables declared with the keyword static are still known only in the function
in which they’re defined, but unlike automatic variables, static local variables rezain their
value when the function is exited. The next time the function is called, the static local
variable contains the value it had when the function last exited. The following statement
declares local variable count to be static and initializes it to 1.

static int count = 1;

All numeric variables of static storage duration are initialized to zero by default if you do
not explicitly initialize them.

Keywords extern and static have special meaning when explicitly applied to
external identifiers. In Chapter 14 we discuss the explicit use of extern and static with
external identifiers and multiple-source-file programs.

5.13 Scope Rules

The scope of an identifier is the portion of the program in which the identifier can be ref-
erenced. For example, when we define a local variable in a block, it can be referenced only
following its definition in that block or in blocks nested within that block. The four iden-
tifier scopes are function scope, file scope, block scope, and function-prototype scope.
Labels (identifiers followed by a colon such as start:) are the only identifiers with func-
tion scope. Labels can be used anywhere in the function in which they appear, but cannot
be referenced outside the function body. Labels are used in switch statements (as case la-
bels) and in goto statements (sece Chapter 14). Labels are implementation details that
functions hide from one another. This hiding—more formally called information hid-
ing—is a means of implementing the principle of least privilege—a fundamental princi-
ple of good software engineering. In the context of an application, the principle states that
code should be granted only the amount of privilege and access that it needs to accomplish
its designated task, but no more.

An identifier declared outside any function has file scope. Such an identifier is
“known” (i.e., accessible) in all functions from the point at which the identifier is declared
until the end of the file. Global variables, function definitions, and function prototypes
placed outside a function all have file scope.

Identifiers defined inside a block have block scope. Block scope ends at the termi-
nating right brace (}) of the block. Local variables defined at the beginning of a function

5.13 Scope Rules 185

have block scope, as do function parameters, which are considered local variables by the
function. Any block may contain variable definitions. When blocks are nested, and an iden-
tifier in an outer block has the same name as an identifier in an inner block, the identifier
in the outer block is hidden until the inner block terminates. This means that while exe-
cuting in the inner block, the inner block sees the value of its own local identifier and 7oz
the value of the identically named identifier in the enclosing block. Local variables
declared static still have block scope, even though they exist from before program
startup. Thus, storage duration does 7or affect the scope of an identifier.

The only identifiers with function-prototype scope are those used in the parameter
list of a function prototype. As mentioned previously, function prototypes do noz require
names in the parameter list—only #ypes are required. If a name is used in the parameter list
of a function prototype, the compiler ignores the name. Identifiers used in a function pro-
totype can be reused elsewhere in the program without ambiguity.

Accidentally using the same name for an identifier in an inner block as is used for an iden-
tifier in an outer block, when in fact you want the identifier in the outer block to be active
Jor the duration of the inner block.

; i ? Common Programming Error 5.9

% Error-Prevention Tip 5.4

Avoid variable names that hide names in outer scopes.

Figure 5.16 demonstrates scoping issues with global variables, automatic local vari-
ables and static local variables. A global variable x is defined and initialized to 1 (line 9).
This global variable is hidden in any block (or function) in which a variable named x is
defined. In main, a local variable x is defined and initialized to 5 (line 14). This variable is
then printed to show that the global x is hidden in main. Next, a new block is defined in
main with another local variable x initialized to 7 (line 19). This variable is printed to show
that it hides x in the outer block of main. The variable x with value 7 is automatically
destroyed when the block is exited, and the local variable x in the outer block of main is
printed again to show that it’s no longer hidden.

1 // Fig. 5.16: fig05_16.c

2 // Scoping.

3 #include <stdio.h>

4

5 void uselLocal(void); // function prototype

6 void useStaticLocal(void); // function prototype
7 void useGlobal(void); // function prototype

8

9 1int x = 1; // global variable

10

Il // function main begins program execution
12 int main(void)
13 {

Fig. 5.16 | Scoping. (Part I of 3.)

186 Chapter 5 C Functions

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

int x = 5; // local variable to main
printf("local x in outer scope of main is %d\n", x);

{ // start new scope
int x = 7; // local variable to new scope

printf("local x in inner scope of main is %d\n", x);
} // end new scope

printf("local x in outer scope of main is %d\n", x);

uselocal(); // uselocal has automatic local x
useStaticlLocal(); // useStaticlLocal has static Tocal x
useGlobal(); // useGlobal uses global x

uselocal(); // uselocal reinitializes automatic Tocal x
useStaticlLocal(); // static local x retains 1its prior value
useGlobal(); // global x also retains its value

printf("\nlocal x in main is %d\n", x);
} // end main

// uselocal reinitializes local variable x during each call
void uselocal(void)

{

int x = 25; // initialized each time uselocal 1is called

printf("\nlocal x 1in uselLocal is %d after entering uselLocal\n", x);
++X;
printf("local x in uselLocal is %d before exiting useLocal\n", X);

} // end function uselocal

// useStaticlLocal initializes static local variable x only the first time
// the function is called; value of x is saved between calls to this
// function
void useStaticlLocal(void)
{
// initialized once before program startup
static int x = 50;

printf("\nlocal static x is %d on entering useStaticlLocal\n", x);
++X;
printf("local static x is %d on exiting useStaticLocal\n", x);

} // end function useStaticlLocal

// function useGlobal modifies global variable x during each call
void useGlobal(void)
{
printf("\nglobal x is %d on entering useGlobal\n", x);
X *= 10;
printf("global x is %d on exiting useGlobal\n", x);
} // end function useGlobal

Fig. 5.16 | Scoping. (Part 2 of 3.)

5.14 Recursion 187

Tocal x in outer scope of main is 5
local x in inner scope of main is 7
local x in outer scope of main is 5

Tocal x 1in uselLocal is 25 after entering uselLocal
Tocal x 1in uselLocal is 26 before exiting uselLocal

local static x is 50 on entering useStaticlocal
local static x is 51 on exiting useStaticlocal

global x is 1 on entering useGlobal
global x is 10 on exiting useGlobal

Tocal x in uselLocal is 25 after entering uselocal
Tocal x in uselLocal is 26 before exiting uselocal

Tocal static x is 51 on entering useStaticlocal
Tocal static x is 52 on exiting useStaticlLocal

global x is 10 on entering useGlobal
global x is 100 on exiting useGlobal

local x in main is 5

Fig. 5.16 | Scoping. (Part3 of 3.)

The program defines three functions that each take no arguments and return nothing,.
Function uselLocal defines an automatic variable x and initializes it to 25 (line 39). When
useLocal is called, the variable is printed, incremented, and printed again before exiting
the function. Each time this function is called, automatic variable x is reinitialized to 25.
Function useStaticlLocal defines a static variable x and initializes it to 50 in line 52
(recall that the storage for static variables is allocated and initialized only once, before the
program begins execution). Local variables declared as static retain their values even when
they're out of scope. When useStaticLocal is called, x is printed, incremented, and
printed again before exiting the function. In the next call to this function, static local
variable x will contain the value 51. Function useGlobal does not define any variables.
Therefore, when it refers to variable x, the global x (line 9) is used. When useGlobal is
called, the global variable is printed, multiplied by 10, and printed again before exiting the
function. The next time function useGlobal is called, the global variable still has its mod-
ified value, 10. Finally, the program prints the local variable x in main again (line 33) to
show that none of the function calls modified the value of x because the functions all
referred to variables in other scopes.

5.14 Recursion

The programs we've discussed are generally structured as functions that call one another
in a disciplined, hierarchical manner. For some types of problems, it’s useful to have func-
tions call themselves. A recursive function is a function that calls itself either directly or
indirectly through another function. Recursion is a complex topic discussed at length in
upper-level computer science courses. In this section and the next, simple examples of re-

188 Chapter 5 C Functions

cursion are presented. This book contains an extensive treatment of recursion, which is
spread throughout Chapters 5-8 and 12 and Appendix F. Figure 5.21, in Section 5.16,
summarizes the recursion examples and exercises in the book.

We consider recursion conceptually first, then examine several programs containing
recursive functions. Recursive problem-solving approaches have a number of elements in
common. A recursive function is called to solve a problem. The function actually knows
how to solve only the simplest case(s), or so-called base case(s). If the function is called with
a base case, the function simply returns a result. If the function is called with a more com-
plex problem, the function divides the problem into two conceptual pieces: a piece that
the function knows how to do and a piece that it does not know how to do. To make
recursion feasible, the latter piece must resemble the original problem, but be a slightly
simpler or smaller version. Because this new problem looks like the original problem, the
function launches (calls) a fresh copy of itself to go to work on the smaller problem—this
is referred to as a recursive call or the recursion step. The recursion step also includes the
keyword return, because its result will be combined with the portion of the problem the
function knew how to solve to form a result that will be passed back to the original caller.

The recursion step executes while the original call to the function has not yet finished
executing. The recursion step can result in many more such recursive calls, as the function
keeps dividing each problem it’s called with into two conceptual pieces. For the recursion
to terminate, each time the function calls itself with a slightly simpler version of the orig-
inal problem, this sequence of smaller problems must eventually converge on the base case.
When the function recognizes the base case, it returns a result to the previous copy of the
function, and a sequence of returns ensues all the way up the line until the original call of
the function eventually returns the final result to main. All of this sounds quite exotic com-
pared to the kind of problem solving we’ve been using with conventional function calls to
this point. It can take a great deal of practice writing recursive programs before the process
will appear natural. As an example of these concepts at work, let’s write a recursive pro-
gram to perform a popular mathematical calculation.

Recursively Calculating Factorials
The factorial of a nonnegative integer 7, written 7! (pronounced “z factorial”), is the prod-
uct

n-n=1)-(n=2)-... -1

with 1! equal to 1, and 0! defined to be 1. For example, 5! is the product 5 *4 *3* 2 * 1,
which is equal to 120.

The factorial of an integer, number, greater than or equal to 0 can be calculated
iteratively (nonrecursively) using a for statement as follows:

factorial = 1;
for (counter = number; counter >= !; --counter)
factorial *= counter;

A recursive definition of the factorial function is arrived at by observing the following
relationship:

n'=n.- (n-1)!

5.14 Recursion 189

For example, 5! is