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Abstract Genetic engineering technique offers myriads of
applications in improvement of horticultural crops for
biotic and abiotic stress tolerance, and produce quality
enhancement. During last two decades, a large number of
transgenic horticultural crops has been developed and more
are underway. A number of genes including natural and
synthetic Cry genes, protease inhibitors, trypsin inhibitors
and cystatin genes have been used to incorporate insect and
nematode resistance. For providing protection against
fungal and bacterial diseases, various genes like chitinase,
glucanase, osmotin, defensin and pathogenesis-related
genes are being transferred to many horticultural crops
world over. RNAi technique has been found quite suc-
cessful in inducing virus resistance in horticultural crops in
addition to coat protein genes. Abiotic stresses such as
drought, heat and salinity adversely affect production and
productivity of horticultural crops and a number of genes
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encoding for biosynthesis of stress protecting compounds
including mannitol, glycine betaine and heat shock proteins
have been employed for abiotic stress tolerance besides
various transcription factors like DREBI, MAPK, WRKY,
etc. Antisense gene and RNAi technologies have revolu-
tionized the pace of improvement of horticultural crops,
particularly ornamentals for color modification, increasing
shelf-life and reducing post-harvest losses. Precise genome
editing tools, particularly CRISPR/Cas9, have been effi-
ciently applied in tomato, petunia, citrus, grape, potato and
apple for gene mutation, repression, activation and epi-
genome editing. This review provides comprehensive
overview to draw the attention of researchers for better
understanding of genetic engineering advancements in
imparting biotic and abiotic stress tolerance as well as on
improving various traits related to quality, texture, plant
architecture modification, increasing shelf-life, etc. in dif-
ferent horticultural crops.

Keywords Genetic engineering - Horticultural crops -
Abiotic and biotic stresses - Quality improvement -
Genome editing

Introduction

Biotechnology has offered tremendous scope and potential
to conventional methods of crop improvement, crop pro-
tection, crop quality management and improving other
horticultural traits. It extends remarkable opportunities in
fruit production enhancement by providing new genotypes
for breeding purpose, supply of healthy and disease-free
planting material, improvement in fruit quality, enhancing
shelf-life, availability of biopesticides, biofertilizers, etc.
Integration of specially desired traits through genetic

Disase cllod dyao .
KACST a,51é1)lg roglel @ Springer


http://orcid.org/0000-0003-4256-7841
http://crossmark.crossref.org/dialog/?doi=10.1007/s13205-017-0870-y&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s13205-017-0870-y&amp;domain=pdf

239 Page 2 of 35

3 Biotech (2017) 7:239

engineering has been made possible in some horticultural
crops. Genetic engineering consists of isolation of a gene of
interest, ligating that gene with a desirable vector to form
the recombinant-DNA molecule and then transferring that
gene into the plant genome to create a new function.
Transgenic technology has been rated as the fastest grow-
ing technology in agriculture (ISAAA 2017). It refers to a
set of techniques used for transferring desirable
gene(s) from any source (plants, animals, microorganisms
or even artificially synthesized genes) across taxonomic
boundaries into a certain plant by non-conventional meth-
ods. In contrast to conventional breeding which involves
the random mixing of tens of thousands of genes present
both in the resistant and susceptible plants, recombinant
DNA technology allows the transfer of only the desirable
genes to the susceptible plants and the preservation of
valuable economic traits. Moreover, the genetic sources for
resistance are not limited only to closely related plant
species (Lurquin 2002). Combating various types of biotic
and abiotic stresses is the foundation and crux of sustain-
able agriculture. Although conventional breeding and
marker-assisted breeding nowadays are being used to
develop more promising cultivars, however, in case of
biennials or perennial horticultural crops, particularly fruit
trees, such techniques are not feasible due to long sexual
generation periods. The major advantages of transgenic
technology lie in that the genes governing for various
agronomically important traits can be sourced from any
organism—plants or microorganisms, etc. and can be
employed for plant transformation. Thus, novel traits from
any background can be incorporated into the target plant
with ease. However, for single gene transfer into elite
backgrounds, the development and standardization of a
high frequency, efficient plant regeneration and genetic
transformation protocol is the utmost pre-requisite. A
number of studies had been carried out in the past to
develop suitable regeneration and genetic transformation
protocol in many horticultural species including apple
(Rustaece et al. 2007), pomegranate (Parmar et al.
2012, 2013, 2015), chilli (Sharma et al. 2006; Khan et al.
2011a), cucumber (Vasudevan et al. 2007), lily (Kathryn
and Han 2008), sweet orange (Singh and Rajam 2010),
broccoli (Kumar and Srivastava 2015), datepalm (Aslam
et al. 2015), chrysanthemum (Naing et al. 2016), etc.
Horticultural biotechnology has been a leading example
in many areas for more than two decades, right from the
commercialization of the first ever transgenic crop in the
form of ‘Flavr-Savr’ transgenic tomato with enhanced
shelf-life trait. The first field trials of transgenic horticul-
tural plants had been carried out in France and USA in
1986 (James and Krattiger 1996). Transgenic Flavr Savr
tomato is the first successful example of genetically mod-
ified food crop and was approved for commercialization in
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USA in 1994. The main resistant traits introduced into
horticultural plants and already commercialized are insect-
pest resistance (Bt. toxin gene) and herbicide tolerance
while other important studies concern virus resistance,
male sterility, etc. Among various genetically modified
(GM) horticultural crops, GM papaya showing resistance
to Papaya ring spot virus contributes to approx. 53% of the
total share of GM horticultural crops cultivated globally.
Herbicide tolerance trait is dominating the GM horticul-
tural crop acreage followed by insect resistance and virus
resistance traits (ISAAA 2017). Also, the RNA interference
(RNAI) technology has gained popularity in plant genetics
and system biology during these days due to its
stable transgene expression. The applications of this tech-
nology cover wide range from insect resistance, viral and
disease resisance, drought, heat, salinity tolerance; devel-
oping designer flower colors by knocking down the
expression of certain endogenous genes, increasing shelf-
life, plant architecture modification etc. It is being used as a
potential tool in tweaking the regulation of various meta-
bolic pathways in plants and assigning functions to the
genes involved, thereof. The most studied crop so far is
tomato, but research activities had already been carried out
in various horticultural crops such as fruits, vegetables and
flowers. With the advancement of regeneration and genetic
transformation protocols, extensive research efforts have
been made to incorporate genes for various biotic and
abiotic stress tolerance/resistance, enhancing shelf-life,
modification of plant architecture and color and texture
modification traits in a number of horticultural crops,
which have been summarized and discussed in this review
paper. An overview of various transgenic strategies tar-
geting horticultural crop improvement is depicted in Fig. 1.

Biotic stress management through transgenic
approach

Insect-pest resistance

At present, insect-pest resistance is lacking generally in
many crop plants. The use of chemical control measures is
proving hazardous to the consumers and also not envi-
ronmentally sustainable. From a grower’s perspective, any
genetic improvement that could reduce the cost of chemical
application to combat pests would be of significant benefit.
Bt (Cry) gene isolated from a soil bacteria Bacillus
thuringiensis has proven highly effective in controlling
various lepidopteran insects in a number of crops suc-
cessfully. Insect resistance was firstly reported in tomato
using Bt. gene in 1987. Transgenic Btf. tomato plants
exhibited resistance against Spodoptera litura and Helio-
this virescens (Fischhoff et al. 1987). Fruit trees like
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Fig. 1 Overview of various transgenic strategies targeting horticultural crop improvement

transgenic persimmon carrying cryl gene were found
resistant to Plodia interpunctata and Monema flavescens
(Tao et al. 1997). Brinjal is among the highly consumed
vegetables in Asia and specifically in Indian subcontinent.
However, it is extremely damaged by a lepidopteran insect,
i.e., Leucinodes orbonalis. Kumar et al. (1998) transformed
a synthetic crylAb gene coding for an insecticidal crystal
protein (ICP) to brinjal (Solanum melongena cv. Pusa
Purple Long) by co-cultivating cotyledons with A. tumefa-
ciens. Gene expression was evaluated by double-antibody
sandwich ELISA analysis. The transgenic lines displayed
significant differences in the insect mortality in fruit
bioassays. It was suggested to express a very high level of
insecticidal crystal protein to confer complete protection
against Leucinodes orbonalis by employing some fruit-
specific promoter for better inducible expression. Potato
varieties engineered for resistance to Colorado potato
beetle were in commercial production for several years and
were technically and agronomically successful, allowing
significant reductions in insecticide use (Shelton et al.
2002). Chakrabarty et al. (2002) transformed cauliflower
var. Pusa Snowball K-1 with a synthetic cryIA(b) gene and
the transgenic plants indicated the effectiveness of the
transgene against infestation by diamondback moth (Plu-
tella xylostella) larvae during insect bioassays. Paul et al.
(2005) developed transgenic cabbage (Brassica oleracea
var. capitata) line DTC 507 with a synthetic fusion gene of
B. thuringiensis encoding a translational fusion product of
crylB and crylAb $-endotoxins to confer resistant against
diamondback moth (Plutella xylostella), the most destruc-
tive pest of cruciferous plants across the globe. Bt cabbage
plants expressing the fusion protein in mature leaves
caused 100% mortality to all the four larval stages of

diamondback moth. Complete mortality of the neonate
larvae had been observed within 24 h and within a period
of 48 h in case of other three stages of larvae. Bt gene
(CrylAc) has been successfully transformed and expressed
in okra (Abelmoschus esculentus) for incorporating resis-
tance against fruit and short borer (Earias vittella), which
is the most serious insect-pest of this crop in Asia
(Narendran et al. 2013). Okra is severely affected by
Earias vittella and its larvae bore into pods and shoots of
the plant and eat the internal tissues leading to withering of
the plant and reduction in the market value of the pods. In
insect bioassays, fruits from transgenic lines showed 100%
larval mortality. Natural as well as synthetic insect resis-
tance genes had been transferred into a number of horti-
cultural crops for imparting resistance against various
insect-pests. Zhang et al. (2015) transformed kiwifruit
plant (Actinidia chinensis) with a synthetic chimeric gene
SbtCrylAc encoding for protein btCrylAc, When the
transgenic plants were screened for insect resistance in
insect bioassays, an average of 75.2% Oraesia excavate
inhibition rate was reported at 10 days of post-infection.
This technology could be highly useful to protect yield
losses of kiwifruit due to insect attack, which is an eco-
nomically as well as nutritionally important fruit crop,
offering a remarkably high vitamin C content.

Other genes such as protease inhibitors, trypsin inhibi-
tors, lectins, etc. have also been employed for incorporation
of insect-pest resistance in many crop species. Ding et al.
(1998) developed insect-resistant transgenic Taiwan cau-
liflower Brassica oleracea var. botrytis cvs. Known You
Early no. 2, Snow Lady and Beauty Lady expressing the
trypsin inhibitor gene, isolated from local sweet potato.
The transgenic plants expressed resistance to Spodoptera
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litura and Plutella xylostella in in-planta bioassays.
Transgenic strawberry expressing cowpea (Vigna unguic-
ulata) protease trypsin inhibitor (CpTi) gene under a
constitutive promoter developed resistance against vine
weevil (Otiorhynchus salcatus). The CpTi transgenic lines
reduced the frequency of survival of weevil larvae and
pupae during insect bioassays (Graham et al. 2002).
Gessler and Patocchi (2007) developed transgenic apple
lines with trypsin inhibitor encoding CpTI gene from
cowpea and crylA(c) gene of B. thuringiensis for incor-
poration of resistance against codling moth pest. Almost all
the genotypes of chrysanthemum are infested by two
aphids, namely Myzus persicae and Aphis gossypii, low-
ering the flower quality and also transmitting viruses.
Valizadeh et al. (2013) transformed chrysanthemum
genotype 1581 by Agrobacterium tumefaciens-mediated
technique with SAE gene, under the control of chrysan-
themum RbcS promoter to incorporate aphid resistance.
The protease inhibitor sea anemone equistatin (SAE) has
three domains for inhibition of both cysteine and aspartic
proteases. In another study, Chrysanthemum morifolium
WRKY48 (CmWRKY48) transcription factor over-express-
ing transgenic chrysanthemum plants were found to inhibit
the population growth of aphids (Li et al. 2015).

Another category of plant pests, root-knot nematode
(Meloidogyne incognita) causes severe yield losses in many
horticultural crops. Genetic transformation of various pro-
teinase inhibitor genes from plants is considered as the most
potential strategy to prevent such yield losses. Cysteine pro-
teinases are involved in the digestion process of root-knot
nematodes and binding of various cystatins to the active sites
of proteinases inhibits their activity by proteolytic digestion
(Shingles et al. 2007). Roderick et al. (2012) developed
transgenic plantain (Musa sp.) cv. Gonja manjaya plants
expressing a maize cystatin gene that inhibits the digestive
cysteine proteinases and a synthetic peptide that disrupts
nematode chemoreception. The best level of resistance
exhibited by the transgenic plants against the major pest
species Radopholus similis was 84% for the cystatin, 66% for
the peptide and 70% for the dual defense. In another study,
Papolu et al. (2016) developed transgenic brinjal plants
expressing a modified rice cystatin (OC-14D86) gene under a
root-specific promoter, TUB-1 for inducing resistance against
root-knot nematode (RKN). Transgenic plants were con-
firmed for gene integration and expression using PCR,
Southern and Western blotting, ELISA and qPCR assays.
When one transgenic line (single copy event) was challenged
with root-knot nematode, 78.3% inhibition rate in reproduc-
tion of root-knot nematode had been reported. In an earlier
study, transgenic banana plants expressing the same cystatin
gene (OC-14D86) exhibited 70% resistance to the migratory
endoparasite, R. similis (Atkinson et al. 2004). Lilley et al.
(2004) had also reported a partial resistance (67%) against
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M. incognita in transgenic potato roots expressing same gene.
Root lesion nematode (RLN), Pratylenchus penetrans, is one
of the main pests of lily producers, particularly in USA, where
lily (Lilium longiflorum) cv. ‘Nellie white’ assumes a great
economic importance as cut flowers and constitutes one of the
most valuable species. Vieira et al. (2015) developed trans-
genic lilies over-expressing the OC-IAD86 gene which dis-
played an enhanced resistance to root lesion nematode
infection by means of nematode reduction up to 75%. The
transgenic lily plants also exhibited an increased biomass and
better growth performance additionally as compared to non-
transformed plants.

Disease resistance

The next major constraint limiting the production of hor-
ticultural crops is different diseases caused by pathogenic
fungi, bacteria and viruses. Conventional breeding seems
to have limited application due to non-availability of
resistant gene(s) in gene pool of a particular crop. One of
the main targets of genetic transformation is to improve
tolerance or to incorporate resistance in plants against
different pathogens. Genetic engineering of disease resis-
tance in crops has become popular and valuable in terms of
cost and efficacy. For imparting resistance against bacterial
and fungal diseases, various genes like chitinase, glu-
canase, osmotin, defensin, etc. are being transferred into
various horticultural crops world over. Various glycolytic
enzymes encoded by genes like chitinase, glucanase, PR
proteins, etc. inside the plant cells have cell wall degrading
capabilities, which attract their use for developing trans-
genic plants for incorporation of resistance against fungal
pathogens (Ceasar and Ignacimuthu 2012).

Among different strategies used for genetic engineering
for disease resistance, the employment of systemic
acquired resistance (SAR)-related genes is of paramount
importance. SAR is long lasting and often associated with
local and systemic accumulation of salicylic acid (SA) and
induced expression of many genes including pathogenesis-
related (PR) genes (Ryals et al. 1996). A gene for a PR
protein from tomato (PR-5) had been expressed in trans-
genic sweet orange and regenerants showed increased tol-
erance to Phytophthora citrophthora (Fagoaga et al. 2001).
Lin et al. (2004) introduced Arabidopsis thaliana-derived
NPR-I gene into tomato. Transgenic tomato plants devel-
oped enhanced heat tolerance and resistance against tomato
mosaic virus (ToMV). The transgenic lines also conferred
significant level of resistance to bacterial wilt (BW) and
Fusarium wilt (FW) along with moderate degree of
enhanced resistance to gray leaf spot (GLS) and bacterial
spot (BS). Malnoy and Aldwinckle (2007) developed
transgenic apple lines over-expressing MpNPRI-1 (ortho-
log of AtNPR1), which exhibited broad spectrum resistance
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against V. inaequalis, Gymnosporangium juniper-virgini-
anae, a causative agent of cedar apple rust and Erwinia
amylovora, which causes fire blight. The Fuji apple, the
most popular and most widely cultivated variety of apple in
China, is highly susceptible to powdery mildew disease.
Apple powdery mildew, which is caused by Podosphaera
leucotricha, damages leaves and young fruits, thus leading
to huge yield losses (Qu et al. 2009). Chen et al. (2012)
introduced Malus hupehensis derived NPR (MhNPR1) gene
into ‘Fuji’ cultivar of apple for development of resistance
against powdery mildew disease. NPRI gene plays a key
role in regulating salicylic acid (SA)-mediated SAR in
plants. MhNPRI gene induced the expression of MdPRs
and MdMLO genes which interact with powdery mildew as
revealed by RT-PCR and the transgenic apple plants
expressed enhanced resistance to powdery mildew disease.
Over-expression of AtNPRI gene in tomato and carrot
plants also exhibited resistance to bacterial and fungal
pathogens (Lin et al. 2004; Wally et al. 2009). Commercial
sweet orange cultivars are suffering from this deadly dis-
ease. Similar findings were reported by over-expression of
a Vitis vinifera NPR1,1 (Vv NPR1,1) gene which conferred
to enhance resistance against powdery mildew in grapevine
(Le et al. 2011). In the United States, Huanglongbing
(HLB) is a very serious disease of citrus, which is associ-
ated with a phloem-limited bacterium Candidatus liberib-
acter asiaticus (CLas) (Duan et al. 2009). Dutt et al. (2015)
over-expressed an Arabidopsis thaliana NPR1 gene under a
constitutive promoter CaMV35S and also under a phloem-
specific Arabidopsis SUC2 (AtSUC2) promoter in sweet
orange cultivar ‘Hamlin’ and ‘Valencia’. NPRI gene is
involved in the induction of expression of several native
genes involved in the plant defense signaling pathways.
The transgenic plants exhibited reduced disease severity
and a few lines remained disease-free even after three years
of planting in a high-disease pressure field site.

Another category of genes imparting disease resistance
is Chitinases, which are glycosyl hydrolases that catalyze
the degradation of chitin, an insoluble, linear -1,4-linked
polymer of N-acetyl glucosamine, a cell wall component of
various bacteria and fungi, and thus code for pathogen
resistance. Chitinase gene has been transferred to a number
of crops for harboring fungal resistance. In carrot, the
tobacco class I ChiC gene has shown resistance against
Botrytis cinerea (Punja and Raharjo, 1996), RCC2 gene, a
rice chitinase displayed enhanced resistance to Sphaer-
otheca humuli in transgenic strawberry plants (Asao et al.
1997). In another study, Yamamoto et al. (2000) trans-
formed a rice chitinase gene (RCC2) into the somatic
embryos of grapevine cv. Neo Muscat and reported an
increased resistance level against powdery mildew fungus,
V. necator. Schestibratov and Dolgov (2005) also devel-
oped transgenic strawberry plants expressing thaumatin Il

gene from Thaumatococcus danielli and reported some
level of resistance to B. cinerea during in vitro assays.
Vellice et al. (2006) expressed a chitinase gene from
Phaseolus vulgaris, a glucanase or a thaumatin-like pro-
tein, both from Nicotiana tabacum and a combination of
both in strawberry cv. ‘Pajaro’. Two transgenic lines
expressing chitinase gene showed enhanced tolerance to
Botrytis cinerea. Khan et al. (2008) attempted to confer
resistance to early blight of potato, caused by Alternaria
solani, transformed a chitinase gene, ChiC, isolated from
Streptomyces griseus strain HUT 6037, along with a bia-
laphos resistance (bar) gene into potato. The herbicide-
resistant transgenic potato plants demonstrated enhanced
resistance against Alternaria solani in in vitro bioassays.
However, in another study, Moravcikova et al. (2004)
reported that the high level of expression of cucumber class
III ChiC gene in potato could not enhance resistance
against the phytopathogenic fungus, Rhizoctonia solani
(causing black scurf disease in potato) to any considerable
level. Das and Rahman (2010) had also expressed bacterial
chitinase (chi B) gene in litchi cv. Bedana, which, however,
showed low level of chitinase activity and only partial
resistance against Phomopsis sp. pathogen had been
reported in transgenic plants. Various endo-chitinases
genes such as CHIT42 and CHIT33 from Trichoderma
harzianum had also been successfully transformed and
expressed to impart increased fungal tolerance in potato
(Lorito et al. 1998), apple (Bolar et al. 2001), broccoli
(Mora and Earle 2001), carrot (Baranski et al. 2008) and
lemon (Distefano et al. 2008). Girhepuje and Shinde (2011)
developed transgenic tomato plants over-expressing a
wheat chitinase gene, chil94, under the control of maize
ubiquitin 1 promoter. The transgenic tomato lines showing
higher expression of chitinase activity were found to be
highly resistant to Fusarium wilt disease of tomato caused
by Fusarium oxysporum f. sp. Lycopersici. In another
study, transgenic litchi (Litchi chinensis) plants containing
a rice chitinase gene were developed to increase the anti-
fungal response. The transgenic lines exhibited higher
chitinase activity and disease resistance than the non-
transformed plants (Das et al. 2012). Guava wilt disease
caused by a soil borne fungus Fusarium oxysporum f. sp.
psidii is emanating as a serious threat to guava growers
throughout the entire globe. To control this disease, Mishra
et al. (2016) transferred a Trichoderma-endochitinase gene
into guava (Psidium guajava). In vitro pathogen inhibition
assay and spore germination assay revealed that the crude
extract of the transformed plants inhibited the germination
of fungal conidia and were resistance to wilt disease.

A number of defense mechanisms were evolved in
plants over thousands of years to overcome pathogen
attack/infection and the role of many genes or various
pathways has been investigated and identified (Islam
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2006). The disease resistance conferred by glucanase gene
may be attributed to solubilizing elicitors from the fungal
cell walls which induce production of antifungal phy-
toalexins (Keen and Yoshikawa 1993). Yoshikawa et al.
(1993) also proposed the role of glucanase in the induction
of the transcription of a plant defense gene, phenylalanine
ammonia lyase in response to fungal attack. Further, glu-
canase is a hydrolytic enzyme, which breaks down the cell
wall component, glucan of many necrotrophic fungal
pathogens. An increased level of resistance in transgenic
potato plants expressing soybean glucanase gene against
Phytopthora infestans has been reported due to the
increased glucanase activity (Borkowoska et al. 1998).
Transgenic kiwifruit over-expressing soybean f3-1,3 glu-
canase gene exhibited a six fold increased enzyme activity
leading to a decrease in the disease lesion area caused by
the gray mold fungus, Botrytis cinerea (Nakamura et al.
1999). Almost all the cultivated varieties of brinjal are
susceptible to wilt disease caused by Verticillum dahliae
and Fusarium oxysporum, which cause considerable yield
losses annually (Najar et al. 2011). To generate wilt disease
resistance in brinjal, Singh et al. (2014) transformed alfalfa
glucanase gene coding for an acidic glucanase into brinjal
cv. Pusa Purple Long. The selected transgenic lines, con-
firmed with DNA and protein blotting techniques, showed
enhanced level of resistance against these wilt causing
fungi with a delay of 5-7 days in disease development as
compared to the non-transgenic plants. Sometimes, it has
been found that the transgenes were capable of inducing
disease resistance trait, but have altered the plant growth
processes due to the use of a constitutive promoter. In a
study, Mercado et al. (2015) expressed f-1,3-glucanase
gene bgnli3,l, isolated from Trichoderma harzianum in
strawberry under the control of CaMV 35S promoter. The
transgenic lines showed reduced anthracnose symptoms
(from 61.0 to 16.5%) in leaf and crown than control plants
after inoculation with Colletotrichum acutatum. However,
most of the transgenic lines displayed stunted phenotype
and reduced yield due to the reduction in number of fruits
per plant and a reduced fruit size.

The use of various antimicrobial proteins coding genes
like defensins had been advocated for combating a large
class of fungal and bacterial pathogens (Collinge et al.
2010). Defensins represent a class of antimicrobial peptides
which play an important defensive role against fungi,
bacteria and protozoa, but are non-toxic to mammalian
cells and plants. Defensin genes encoded proteins react by
creating certain pores in the fungal hyphal membrane and,
thus, disturb the ion-influx—outflux and kill the fungal
pathogens. Zainal et al. (2009) reported an enhanced level
of resistance in transgenic tomato expressing Capsicum
annum defensin gene against various fungal pathogens. A
bell pepper JI defensin gene was also reported to confer
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resistance against anthracnose disease of mango, which is
caused by Colletotrichum gloeosporioides (Rivera-Dom-
inguez et al. 2011). Protein extract from processed embryos
of transgenic mango cv. ‘Ataulfo’ inhibited the growth of
C. gloeosporioides, Aspergillus niger and Fusarium spp.
Transgenic banana plants over-expressing two defensin
genes—PhDefl and PhDef2 had been found resistant
against Fusarium oxysporum f. sp. cubense (Ghag et al.
2012). In addition to that, genetic transformation of many
non-plant antimicrobial compounds like cercopin, attacin,
phytoalexins had been reported to enhance resistance level
in plants expressing them (Mondal et al. 2012; Ahuja et al.
2012). Transgenic apple expressing maize Leaf color (Lc)
gene exhibited resistance to fire blight and scab diseases
(Flachowsky et al. 2010). In another study, transformation
of a biotin binding protein (Markwick et al. 2003) and a
proteinase inhibitor gene from Nicotiana alata exhibited
resistance against light brown apple moth disease. Con-
stitutive expression of a fungus-inducible carboxy esterase
gene (PepEST) under CaM V35S promoter was reported to
increase the anthracnose disease resistance in transgenic
pepper (Capsicum annum) (Ko et al. 2016). PepEST gene
expression in fruits leads to disease resistance development
by generation of H,O, and expression of pathogenesis-re-
lated (PR) genes, which encode for a number of small
proteins having antimicrobial activity. On infection of the
anthracnose fungus, Colletotrichum gloeosporioides on the
transgenic fruits of pepper cv. Nokkang, a higher level of
expression of PR genes, namely PR3, PR5, PRIO and
PepThi was reported than the non-transgenic plants. Fur-
ther, a lower rate of disease occurrence (30%) was reported
in the transgenic fruits than in the wild-type plants.
Various types of polyamines including putrescine,
spermidine and spermine play a key role in imparting tol-
erance/resistance to both biotic and abiotic stresses.
Hazarika and Rajam (2011) transformed tomato cv. Pusa
Ruby with a human S-adenosyl methionine decarboxylase
(samdc) gene, which is involved in the biosynthesis of
polyamines viz. spermidine and spermine. The transgenic
tomato plants synthesized higher level of polyamines and
also expressed enhanced level of resistance against
Fusarium oxysporum causing wilt disease and Alternaria
solani, the early blight causing fungus. In addition to that,
the transgenic lines also expressed better tolerance to a
variety of abiotic stresses including high temperature,
drought, salinity and chilling stress. Shin et al. (2002)
developed transgenic chilli pepper plants (Capsicum
annum cv. Nockwang) with Tsil (tobacco stress-induced 1)
gene via Agrobacterium tumefaciens-mediated gene trans-
fer technique using cotyledon and hypocotyl explants. The
protein product of T'si/ gene has got some role in regulating
stress-responsive genes and pathogenesis-related (PR)
genes. The transgenic chilli plants expressed enhanced
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resistance to pepper mild mottle virus, cucumber mosaic
virus, a bacterial pathogen—Xanthomonas campestris pv.
Vesicatoria and a fungal pathogen—Phytophthora capsici.
Genetic transformation of Vf gene, imparting scab disease
resistance caused by Venturia inaequalis under CaMV 35S
promoter in apple, had been found to impart scab resistance
in susceptible cultivars of apple in a number of studies
(Malnoy et al. 2008; Szankowski et al. 2009; Joshi et al.
2009). Banana (Musa sps.) is one of the most important
fruit crops being cultivated in about 120 countries across
the globe. India is the largest global producer of banana.
Banana Xanthomonas wilt (BXW), which is caused by
Xanthomonas campestris pv. musacearum, is considered as
one of the most destructive diseases of this fruit crop,
particularly in East and Central Africa (Tripathi et al.
2009). In a study, Namukwaya et al. (2012) expressed plant
ferredoxin like protein (Pflp) gene under the control of
CaMV35S promoter in transgenic banana cv. ‘Sukali Ndi-
izi’ and ‘Nakinyika’ to develop resistance against BXW
disease. In bioassay studies, 67% of the transgenic lines
were found resistant to BXW and did not show any disease
symptoms, while the wild-type plants expressed severe
symptoms of wilting. In another study, grapevine rootstock
of V. berlandieri x V. rupestris cv. Richter 110 had been
transformed with an Agrobacterium oncogene-silencing
gene to develop crown gall-resistant lines (Galambos et al.
2013). Lindow et al. (2014) reported a reduced severity of
Pierce’s disease and pathogen mobility in transgenic grape
cv. Freedom by the over-expression of an rpfF’ gene (from
Xylella fastidiosa), which codes for the synthase for dif-
fusible signal factors (DSFs). Cheng et al. (2016) trans-
formed Vitis vinifera Thompson Seedless grape with a
stilbene synthase gene, VgSTS6, isolated from Chinese
wild-type V. quinquangularis accession Danfeng-2 under a
fruit-specific promoter to develop resistance against pow-
dery mildew disease, caused by Uncinula necator. The
transgenic plants synthesized enhanced quantity of trans-
resveratrol and other stilbene compounds as compared to
the control plants and expressed enhanced resistance to
powdery mildew fungus. It has been found that VgSTS6
gene is involved in resveratrol biosynthetic pathway in
grapes and, thus, plays a key role in imparting protection
against invading pathogens. Jiwan et al. (2012) reported
antisense expression of the peach MLO gene in strawberry
(Fragaria x ananasa) conferred cross-species resistance
to Fragaria-specific powdery mildew. RNA-interference
(RNAI) technology being used recently is quite successful
in controlling various bacterial and fungal diseases in
plants by switching off the expression of certain endoge-
nous genes. In one such study, transgenic tomato plants
expressing hipRNA constructs against Agrobacterium iaaM
and ipt oncogenes were found to be resistant to crown gall
disease (Escobar et al. 2001). Recently, Pessina et al.

(2016) reported an increased level of resistance in grape-
vine to powdery mildew by RNAi-mediated silencing of the
susceptible (S-gene) MLO-7.

Virus resistance

In fruit crops, the coat protein-mediated approach to
engineer virus resistance has been in application to intro-
duce resistance against various viral diseases. Papaya is
grown in many tropical countries, but its cultivation is
being threatened by Papaya Ring Spot Virus (PRSV), a
disease that is considerably lowering its yield. Using
biotechnological interventions, the coat protein gene of the
virus has been transferred to papaya to confer PRSV
resistance. Since 1998, GM papayas have been cultivated
in Hawaii, USA, which had shown considerable resistance
to PRSV. PRSV-resistant transgenic papaya varieties
‘SunUp’ and ‘Rainbow’ have now occupied >80% shelf-
space in the US market. Strawberry is susceptible to vari-
ous devastating fungi, bacteria and viruses. Finstad and
Martin (1995) developed transgenic strawberry plants
expressing a coat protein (cp) gene from strawberry mild
yellow edge potexvirus (SMYELV-CP) and these lines
conferred resistance to the virus. In another study, Lee
et al. (2009) developed transgenic chilli pepper plants with
a coat protein gene (CMVPO-CP). Three independent
transgenic events, which were earlier highly tolerant to
CMVP1 pathogen, were also found to be tolerant to
CMVPO pathogen. The production and productivity of
watermelon (Citrullus lanatus) have been affected con-
siderably by two viruses, namely Zucchini yellow mosaic
virus (ZYMV) and papaya ring spot virus type W (PRSV
W) worldwide. In an attempt to get rid of these two viruses
altogether, Yu et al. (2011) transformed three watermelon
cultivars, namely ‘Feeling’, ‘China rose’, and ‘Quality’
with chimeric construct containing truncated ZYMV coat
protein (CP) and PRSV W CP genes via Agrobacterium
tumefaciens-mediated gene transfer technique. Two com-
pletely immune transgenic lines of ‘Feeling’ cultivar had
been obtained during greenhouse bioassays where these
two lines showed complete resistance to ZYMV and PRSV
W and no virus accumulation was detected by Western
blotting from these transgenic lines.

Also, transgenic papaya plants with the mutated repli-
case (RP) gene from PRSV showed high resistance or
immunity against PRSV in the field (Xiangdong et al.
2007). Borth et al. (2011) developed transgenic banana (cv.
Dwarf Brazilian) plants resistant to banana bunchy top
virus (BBTV) by transforming four gene construct derived
from the replicase associated protein (Rep) gene of the
Hawaiian isolate of BBTV. The transgenic plants showed
no bunchy top symptoms, while the non-transgenic plants
expressed bunchy top symptoms. Azadi et al. (2011)
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transformed lily cv. ‘Acapulco’ plants with a defective
cucumber mosaic virus replicase gene and four transgenic
lines were found to show enhanced level of virus
resistance.

RNAi technology has been found successful to impart
resistance to various viral diseases in plants. The expres-
sion of a self-complementary hairpin RNA under the
control of rolC promoter controlled the systemic disease
spread caused by plum pox virus without preventing local
infection (Pandolfini et al. 2003). Using a hairpin RNA
gene silencing strategy, transgenic poinsettia plants resis-
tant to Poinsettia Mosaic Virus have been developed
(Clarke et al. 2008). Praveen et al. (2010) developed
transgenic plants of tomato with AC4 gene-RNAi construct
and the transgenic plants were found to show the sup-
pression of tomato leaf curl virus activity. Transgenic
banana plants expressing siRNA targeted against viral
replication initiation (Rep) gene were developed by She-
khawat et al. (2012), which showed high level of resistance
to BBTV infection. Transgenic development work carried
out in various horticultural crops for imparting biotic stress
resistance has been summarized in Table 1.

Abiotic stress management through transgenic
approach

Abiotic stresses such as heat, drought and salinity are the
major environmental constraints affecting production and
productivity of almost all horticultural crops. Conven-
tional plant breeding has not been proved that much
successful in addressing abiotic stress mitigation so far.
The reason might be that the traits are controlled by a
number of genes present at a quantitative trait locus
(QTL). To combat the negative effects of various abiotic
stresses, it is pre-requisite to identify potential candidate
genes or QTLs (gene networks) associated with broad-
spectrum multiple abiotic stress tolerance. Various abiotic
stresses including drought, high temperature, salinity,
frost and flood, etc. adversely affect overall crop growth
and productivity by affecting the vegetative and repro-
ductive stages of growth and development. These stresses
generally trigger a series of physiological, biochemical
and molecular changes in the plants which often result in
damage to the cellular machinery (Rai et al. 2011). These
changes include the disruption of cellular osmotic balance
leading to dysfunctional homeostasis, ion distribution and
oxidative stresses which cause denaturation of integral
proteins of plants. Plants respond to such stresses in a
variety of mechanisms which trigger the cell signaling
process, transcriptional controls and production of a
number of stress conditions related tolerant proteins,
antioxidants and osmotic solutes to maintain homeostasis

igllase clloll dvao .
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and to protect and repair the damaged integral proteins.
Generally, plants which are stress sensitive are unable to
synthesize such compounds under stress conditions and,
thus, are rendered liable to various stresses which hamper
their overall growth. A number of genes have been
identified in a number of plants/organisms, closely or
distantly related, which code for the synthesis of these
stress protecting compounds and thus can be targeted for
genetic transformation into sensitive genotypes. Such
genes have been classified into three categories as:
(a) genes which code for the synthesis of various osmo-
lytes such as mannitol, glycine betain, proline, and heat
shock proteins, (b) genes responsible for ion and water
uptake and transport like aquaporins and ion transporter,
etc. and (c) genes regulating transcriptional controls and
signal transduction mechanism, examples MAPK, DREBI,
etc. Research on genetic modification of various horti-
cultural crops for improved abiotic stress tolerance has
been explored.

Drought tolerance

Various genes controlling signaling and gene regulatory
pathways offer certain key targets for genetic engineering
for abiotic stress tolerance. Transcription factors (7Fs) that
regulate or switch on the expression of a number of genes
involved in imparting abiotic stress tolerance in plants have
been proposed as the most efficient targets for genetic
transformation (Bhatnagar-Mathur et al. 2008). These
transcription factors include DREBI gene family, Myb
gene family, etc. Tsai-Hung et al. (2002) transformed
tomato plants with a DNA cassette containing an Ara-
bidopsis C repeat/dehydration-responsive element binding
factor 1 (CBFI) cDNA and a nos terminator, driven by a
cauliffower mosaic virus 35S promoter. These transgenic
tomato plants were more resistant to water deficit stress
than the wild-type plants. Pasquali et al. (2008) reported
improved tolerance to cold and drought stress in transgenic
apple by the over-expression of a cold-inducible Osmyb 4
gene from rice, which codes for a TF belonging to Myb
family. The over-expression of DREBIb TF gene had also
been reported to induce cold tolerance and drought toler-
ance in transgenic grapevine (Jin et al. 2009). Chrysan-
themum is one of the leading ornamental cut flowers across
the globe and its production is severely hampered by var-
ious environmental conditions (Gao et al. 2012). Drought
stress harms this crop to the maximum extent by retarding
its growth. WRKY transcription factors (7Fs) work as
positive or sometimes negative regulators in various abiotic
stress responses in plants. Fan et al. (2016) transformed a
CmWRKYI TF derived from Chrysanthemum morifolium
and over-expressed it in chrysanthemum cultivar ‘Jinba’. It
was found that CmWRKYI regulates an ABA-mediated
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pathway by suppressing the expression levels of various
genes including PP2C, ABII and ABI2, and activating the
expression levels of genes like PYL2, SnRK2-2, ABF4,
MYB2, RABI8 and DREBIA in a positive regulation. The
transgenic plants displayed increased drought tolerance in
polyethylene glycol (PEG) stress as compared to control
plants. Also, multiple abiotic stress tolerance in banana had
been reported by the over-expression of MusaWRKY71
gene, which is a very potential abiotic stress-responsive
WRKY TF gene, cloned from Musa species cv. Karibale
Monthan (Shekhawat and Ganapathi 2013).

A bacterial mannitol-1-phosphate dehydrogenase (mtlD)
gene driven by the constitutive cauliflower mosaic virus
(CaMV) 35S promoter was transferred into tomato plants
which provides improved abiotic stress tolerance in the
transformed plants (Khare et al. 2010). Drought (poly-
ethylene glycol in medium) and salinity (sodium chloride in
medium) tolerance tests revealed that transgenic lines
exhibited a higher tolerance for abiotic stresses than non-
transformed plants. To impart tolerance to various abiotic
stresses in potato, Gangadhar et al. (2016) transformed a
potato-derived gene StnsLTP1 into potato (Solanum
tuberosum cv. Desiree) using Agrobacterium tumefaciens-
mediated genetic transformation method. Under stress con-
ditions, transgenic potato lines displayed enhanced cell
membrane integrity by reduced membrane lipid peroxida-
tion activity and H,O, content, comparatively. Also an
increased level of antioxidant enzyme activity with
enhanced accumulation of ascorbates and upregulation of
various stress-related genes including StAPX, StCAT,
StSOD, etc. was reported in transgenic potato plants. In an
attempt to improve abiotic stress tolerance in mulberry, a
very important plant of silk industry, Hval gene encoding for
late embryogenesis abundant protein from barley, was
transformed by Agrobacterium tumefaciens-mediated
method (Checker et al. 2012). LEA proteins comprise a
group of hydrophillins, which are induced as a response to
dessication in seeds and are also stimulated under various
abiotic stress conditions like dehydration, salinity, chilling or
high temperature stress in vegetative tissues of plants
(Khurana et al. 2008). The transgenic lines displayed an
enhanced level of tolerance to drought, salinity and cold
conditions than normal plants as quantified by free proline,
membrane stability index (MSI) and PS II activity. Glycine
betaine plays an important role in drought stress tolerance by
scavenging oxidative stress-inducing molecule (free radi-
cals) and it also protects the photosynthetic system in plants.
Cheng et al. (2013) transformed choline oxidase gene
(CodA) isolated from Arthrobacter globiformis, which is
involved in the biosynthesis of glycine betaine, into potato
cv. ‘Superior’ under an oxidative stress-inducible SWAP2
promoter for inducing drought stress tolerance trait. Under
water-stress conditions, transgenic potato plants showed
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expression of codA gene and an accumulation of glycine
betaine with a higher leaf water potential as compared to the
non-transformed plants. In the stress-recovery treatment,
transgenic potato plants displayed a stronger antioxidant
activity, higher chlorophyll content, more efficient photo-
synthesis and better recovery, comparatively. Plant micro
RNA (miRNA) regulates several developmental and physi-
ological phenomena inside the plants including drought
responses. Zhang et al. (2011a, b) transformed tomato with
an miR 169 family member, Sly-miR169c, which can effec-
tively down-regulate the transcripts of the target genes—
three nuclear factor Y subunit genes (SINF-YA1/2/3) and one
multidrug resistance-associated protein gene (SIMRPI),
which are down-regulated under drought stress. The trans-
genic tomato plants over-expressing Sly-miR169c displayed
reduced stomatal opening, reduced leaf water loss and
transcription rate with enhanced drought tolerance traits.

Heat tolerance

Under heat stress, many reactive oxygen species (ROS)
such as hydrogen peroxide (H,0O,) and superoxide are
produced inside the plant cells, leading to various kinds of
physiological disorders in plants which affect crop growth
and productivity. These ROS denature enzymes and dam-
age various cellular components inside the plant cells.
Tolerance to heat stress is straightway correlated with the
increased capacity of plants to scavenge ROS (Chaitanya
et al. 2002). Thus, it is very important to scavenge ROS to
maintain normal growth and metabolism of plants. Plants
have developed a variety of mechanisms to combat ROS by
the production of various enzymatic systems like super-
oxide dismutase (SOD) to remove superoxide ions, glu-
tathione reductase (GR) and peroxidase to scavenge
peroxide ions (H,O,), etc. (Noctor and Foyer 1998). Thus,
over-expression of ROS scavenging enzymes in plants via
genetic transformation offers a much potential strategy to
overcome heat stress. Wisniewski et al. (2002) reported
over-expression of cytosolic ascorbate peroxidase (cAPX)
gene improved tolerance to heat stress in transgenic apple.
Wang et al. (2006) developed transgenic tomato plants
which over-expressed cAPX gene with enhanced tolerance
to heat (40 °C), In field tests, detached fruits from field
grown transgenic tomato plants showed enhanced resis-
tance with the exposure to direct sunlight as compared to
the fruits from wild-type (non-transgenic) plants. Over-
expression of Cu/Zn superoxide dismutase (Cu/Zn SOD)
gene (derived from Manihot esculenta) under an oxidative
stress inducible promoter SWPA2 in potato led to enhanced
heat stress tolerance (Tang et al. 2006). Cu/Zn SOD is an
ROS scavenging enzyme and, thus, helps in quenching of
free radicals released under heat stress in plants. Trans-
genic plants expressed enhanced tolerance to 250 pM



3 Biotech (2017) 7:239

Page 17 of 35 239

methyl viologen and the visible damage due to heat stress
was around 25% in the transgenic plants as compared to the
non-transgenic/wild-types, which were destroyed com-
pletely under heat stress.

The non-enzymatic methods involve the production of a
variety of chemical compounds including polyamines,
carotenoids, ascorbic acid, tocopherol, etc., which directly
react with ROS, scavenge them and thus provide protection
to the plants against heat stress. Polyamines play an
important role in imparting thermal stress tolerance in
plants. S-adenosyl-I-methionine decarboxylase (SAMDC)
is one of the key regulatory target enzymes in polyamines
biosynthesis. Cheng et al. (2009) over-expressed SAMDC
cDNA, isolated from Saccharomyces cerevisae, in tomato
plants for enhanced polyamines production. Transgenic
lines produced 1.7-2.4-fold higher levels of spermidine and
spermine with enhanced antioxidant enzyme activity and
better protection of membrane lipid peroxidation as com-
pared to wild-type plants, leading to enhanced tolerance to
high temperature stress (38 °C). Over-expression of heat
shock proteins in plants has been proposed as one of the
potential strategies to combat heat stress. HSPs function as
molecular chaperons, who are involved in correct protein
folding, assembly, translocation, degradation and they also
provide stability to integral proteins and cell membranes
under heat stress (Boston et al. 1996). Song et al. (2014)
over-expressed CgHSP70 gene conferring for heat toler-
ance in chrysanthemum. The transgenic lines exhibited an
increased peroxidase (POD) activity, higher proline content
and reduced malondialdehyde (MDA) content. Proline is
an important osmoprotectant that protects cells from
damage under heat stress and transgenic plants were better
able to tolerate heat stress than wild-type plants.

Salinity tolerance

Salinity or salt stress is one of the most prevalent abiotic
stresses that severely affect the quality and quantity of
different horticultural produce. Around 20% of the world
irrigated agricultural land is affected with salinity problem
(Rengasamy 2006). Salinity tolerance is a complex mech-
anism governed by many genes (Bojorquez-Quintal et al.
2014). Plants which are exposed to abiotic stress conditions
produce several pathogenesis-related proteins to compen-
sate the adverse effect of stress conditions. Osmotin is one
of the important pathogenesis-related proteins, which is
produced by the plants to combat various biotic and abiotic
stresses. Husaini and Abdin (2008) over-expressed tobacco
osmotin gene in strawberry (Fragaria x ananasa Duch.)
and found that the transgenic strawberry plants exhibited
tolerance to salt stress. Chilli plants are not easily amenable
to tissue culture and genetic transformation, thus limiting
the scope of genetic improvement for various biotic and

abiotic stresses (Kothari et al. 2010). Subramanyam et al.
(2011) could successfully improve the tolerance of chilli
pepper (Capsicum annum L. cv. Aiswarya 2103) plants by
the ectopic expression of tobacco osmotin gene via
Agrobacterium tumefaciens-mediated gene transfer tech-
nique. T, generation of transgenic pepper plants revealed
enhanced levels of chlorophyll, proline, glycine betaine,
ascorbate peroxidase (APX), superoxide dismutase (SOD),
glutathione reductase (GR) and relative water content
(RWC) in biochemical analysis and survived in salinity
level up to 300 mM NaCl concentration. In comparison to
other horticultural crops, citrus species are the most sen-
sitive to soil salinity, which greatly limit growth and pro-
ductivity of citrus crops across the globe. Cervera et al.
(2000) transformed Carrizo citrange, an excellent rootstock
of citrus with a yeast-derived halotolerance gene, HAL 2,
which is involved in salt tolerance mechanism. HAL2 gene
is involved in the methionine biosynthetic pathway and
confers tolerance to lithium and sodium ions. It encodes for
a salt-sensitive biphosphate nucleotidase, which is required
for sulfate accumulation. The transgenic lines expressing
HAL? protein showed improved tolerance to salinity than
the wild-type plants. Tomato is considered as one of the
most important vegetable crops worldwide for the com-
mercial value it offers. Wang et al. (2005) developed
transgenic tomato plants expressing tolerance to chilling
and salt stress by incorporation of cytosolic ascorbate
peroxidase (cAPX) gene, derived from pea (Pisum sativum
L.). Ascorbate peroxidase plays a key role in quenching
hydrogen peroxide (H,O,) in plant cells, thus providing
protection against oxidative injury induced by chilling and
salt stress. The transgenic plants showed better seed ger-
mination rate (26-37%) than the wild type (3%) when the
seeds were placed at 9 °C for 5 weeks. APX activity was
found 10-25 folds higher in transgenic plants under salinity
stress (200-250 mM) conditions, thus ensuring minimum
damage to the leaves comparatively.

Various abiotic stresses including salinity, chilling and
oxidative stresses are the critical factors limiting the cul-
tivation and productivity of sweet potato (I[pomoea bata-
tas), a root vegetable crop. It has been observed that the
increased production of glycine betaine in plant cells
improves their tolerance level towards these stresses. Fan
et al. (2012) transformed sweet potato cv. Sushu-2 with a
chloroplastic betaine aldehyde dehydrogenase (SoBADH)
gene from Spinacia oleracea, which is involved in the
biosynthesis of glycine betaine. The over-expression of
SoBADH gene in transgenic sweet potato improved toler-
ance towards salinity, oxidative stress and low temperature
by providing protection against cell damage by maintaining
cell membrane integrity, stronger photosynthetic activity,
reduced ROS production and activation of ROS scavenging
mechanism. To enhance the tolerance of tomato plants to
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salinity stress, Lim et al. (2016) transformed a strawberry
D-galacturonic acid reductase (GalUR) gene into cherry
tomato (Solanum lycopersicum) lines to increase the
ascorbic acid content. Transgenic tomato plants enriched
with high fruit ascorbic acid contents had been found more
tolerant to abiotic stress induced by viologen, NaCl and
mannitol as compared to the wild-type plants. The trans-
genic events could survive at a salt stress up to 200 mM
and also showed higher expression levels of antioxidant
genes including APX and CAT, responsible for imparting
additional capabilities to the transgenic plants for salt tol-
erance. Under high salinity stress conditions, ion-home-
ostasis within the plant cells get disturbed altering the
overall metabolism. Bulle et al. (2016) developed trans-
genic chilli pepper (Capsicum annuum) plants expressing
wheat Na*/H™ antiporter gene (TaNHX2) to develop tol-
erance towards salinity stress. Transgene integration and
expression were confirmed by PCR, Southern hybridization
and RT-PCR in T; generation. In biochemical assays,
transgenic lines gave enhanced levels of proline, chloro-
phyll, superoxide dismutase, ascorbate peroxidase, relative
water content and reduced level of H,O, and malondi-
aldehyde as compared to the non-transformed plants under
salt stress conditions. Over-expression of TaNHX2 gene
has already been evaluated in tomato to combat salinity
stress (Yarra et al. 2012). To improve salt tolerance in
bottle gourd, Han et al. (2015) transformed a bottle gourd
line ‘G5’ with Arabidopsis thaliana-derived H+-py-
rophosphatase AVP gene. The AVPI-expressing transgenic
lines exhibited an improved salt tolerance and maintained
higher relative water content under salt stress regime in
glasshouse. When watermelon plants were grafted onto the
transgenic bottle gourd root stock, they also exhibited
greater salt tolerance generating higher biomass and pho-
tosystem II quantum yields.

Herbicide tolerance

Herbicide tolerance in bedding plants can be expected to
significantly reduce the cost of weeding in a landscape
environment. The herbicide glyphosate is a potent inhibitor
of the enzyme 5-enolpyruvylshikimate-3-phosphate syn-
thase (EPSP) in higher plants. A complementary DNA
(cDNA) clone encoding EPSP synthase was isolated from a
complementary DNA library of a glyphosate-tolerant Pe-
tunia hybrida cell line (MP4-G) that overproduces the
enzyme. This cell line was shown to overproduce EPSP
synthase messenger RNA as a result of a 20-fold amplifi-
cation of the gene. A chimeric EPSP synthase gene was
constructed with the use of the cauliflower mosaic virus
35S promoter to attain high-level expression of EPSP
synthase and introduced into petunia cells. Transformed
petunia cells as well as regenerated transgenic plants were
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found tolerant to glyphosate (Shah et al. 1986). Transgenic
pineapple plants transformed with the bar gene for biala-
phos resistance were developed (Sripaoraya et al. 2006)
and evaluated for tolerance to herbicide Basta. Seven
months after transfer to the field, plants were found tolerant
to 1600 ml/rai of the herbicide Basta® X (stock concen-
tration 15% w/v glufosinate ammonium), this being twice
the dose recommended for field application of the herbi-
cide. Transgenic plants tolerant to Glufosinate ammonium
should facilitate more effective weed control in pineapple
plantations without damage to the crop. Transgenic
development work in various horticultural crops for
imparting abiotic stress tolerance/resistance has been
summarized in Table 2.

Enhancing fruit quality for increased shelf-life
and reduced post-harvest losses

Excessive softening is the main factor limiting fruit shelf-
life and storage. Transgenic plants modified for the
expression of cell wall modifying enzymes have been used
to investigate the role of particular activities in fruit soft-
ening during ripening. Fruit ripening has been modified by
altering the activity of cell wall enzymes such as poly-
galacturonases that are involved in tissue softening and
deterioration. The biosynthesis of ethylene, the fruit
ripening hormone, has also been blocked in several ways to
delay fruit ripening. Calgene Inc., USA (1994) developed
the first commercialized transgenic plant, a long shelf-life
tomato by the suppression of polygalacturonase (PG) gene
by antisense strategy (Smith et al. 1988). PG gene encodes
for polygalacturonase enzyme which degrades pectin, the
major component of fruit cell wall. Calgene Inc. has given
the brand name ‘Mac Gregor’ to its transgenic tomato and
the fruits of this plant had enhanced shelf-life for approx-
imately 2 weeks longer without softening. The Flavr Savr
tomatoes have improved flavor and total soluble solids
(TSS), in addition to the enhanced shelf-life. However, this
Flavr Savr variety was withdrawn from the market three
years later because of its disease susceptibility and lack of
productivity. The plant hormone ethylene is involved in
senescence in many flowers and fruits and their vase life
can be extended by either blocking ethylene biosynthesis or
ethylene reception (Bovy et al. 1999). Later on, other
tomato varieties with increased shelf-life were developed
through antisense RNA inhibition of ACC synthase or ACC
oxidase, two ethylene precursors. Delayed leaf senescence
has been achieved in tobacco and petunia by manipulation
of cytokinin biosynthesis (Clark et al. 2003). Researchers
at the Horticultural Research International, the United
Kingdom, have identified the genes which control the taste,
smell and color of strawberries. As a result, it would now
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coloration of fruits at different stages of ripening. This trait
may find usefulness in tomato processing industry.
Behboodian et al. (2012) silenced the expression of ACC
oxidase (ACOI) gene in tomato using RNAi approach to
lower down ethylene production, which is involved in
regulating fruit ripening and flower senescence. The
transgenic tomato lines harboring the hipRNA-ACOI gene
exhibited lower ethylene production and a longer fruit
shelf-life of 32 days as compared to 10 days for wild-type
fruits. Further, fruits of transgenic tomato demonstrated
reduced level of firmness loss as a result of decrease in
pectin methylesterase (PME) and polygalacturonase (PG)
activities.

Color enhancement and increasing vase life
in various ornamental crops

Genetic engineering techniques had so far limited impact in
ornamental horticulture field. However, ornamental horti-
culture and particularly floriculture are very well suited to the
approach of genetic engineering technology. The primary
focus on color modification is important in cut flowers
because flower color is an important driver of new variety
development. Ornamental plants generally have eye-catch-
ing attraction and aesthetic importance. Altering flower color
or plant architecture has been an important area of work for
all the floriculturists. Several ornamental plants, including
carnation, rose and gerbera, have been engineered for mod-
ified flower color. The primary color imparting pigments
present in flowers are a wide class of flavonoids, carotenoids
and betains, which are the targets of genetic engineering for
color alterations/modifications. Flower color modification
venture includes modifying the flavonoid biosynthetic
pathway through the introduction of new genes, over-ex-
pression of certain key regulatory genes or by silencing the
expression of those target genes by co-suppression strategy,
antisense gene technology or by RNAi technique. Research
has been focused on the manipulation of either anthocyanins
(red and blue colors) or carotenoids (yellow and orange
colors), with the intent of creating a wider range of flower
colors than occurs naturally, as well as to produce natural
dyes for industrial purposes (Lu et al. 2003). The first
application of genetic engineering to modify flower color led
to the production of an orange pelargonidin-producing
Petunia variety, which produced flowers with pale brick
color. This was achieved by the expression of dihy-
droflavonol-4 reductase (dfr) gene from maize in a petunia
line (Meyer et al. 1987). Chalcone synthase (Chs) is another
gene which had been used for production of pink, white and
variegated flowers (sense and antisense genes were used) in
petunias, chrysanthemum, gerbera and roses (van der Krol
et al. 1988). Transgenic violet carnations have been

igllase clloll dvao .
KACST 3.0:50lq rog sl @ Springer

successfully produced with the introduction of F3'5'H gene
from Petunia hybrida which encodes a flavonoid required for
the biosynthesis of delphinidin (Holton et al. 1993). The vase
life of flowers can be altered by manipulating the biosyn-
thesis of ethylene. The enzymes ACC synthase and ACC
oxidase are encoded by genes acs and aco, respectively, and
both have been cloned from many species including carna-
tion. Transgenic carnation having antisense aco gene had
been produced and exhibited longer vase life. Flowers of the
transgenic carnation plants exhibited low climacteric ethy-
lene production and a markedly delayed petal senescence
(Savin et al. 1995).

Till date, the only genetically modified product com-
mercialized on a significant scale are the color modified
carnations developed in a joint venture by Suntory Ltd. and
Florigene Ltd. Florigene is selling transgenic Moon series
carnations engineered for dark violet—purple color around
the world. The varieties are developed in Australia and
flowers are produced primarily in South America for
marketing in the United States and Japan. In another study,
fruit-specific RNAi-mediated suppression of a photomor-
phogenesis regulatory gene (DETI) was reported to
enhance the carotenoid and flavonoid content in tomatoes
(Davuluri et al. 2005). Recently, in 2009, transgenic blue
roses had been developed by two companies, namely
Florigen Ltd. and Suntory Ltd. in Australia. A package of
three genes was transferred to red rose plants as; a synthetic
RNAi gene that switches off the red rose dihydroflavonol
reductase (DFR) gene, a delphinidin gene from blue pansy
and a DFR gene from iris that had an affinity for producing
delphinidin (Katsumoto et al. 2007). The resultant roses
exclusively accumulated delphinidin in the petals, and the
flowers had blue hues, not so far achieved by hybridization
breeding. Worldwide, chrysanthemum is considered as one
of the most economically valuable flowers. Research
efforts have been focused on improving various traits in
chrysanthemum including flower color and architectural
variants. Chrysanthemums are typically used as cut flowers
or potted plants. Obtaining bright red and blue colored
flowers has always been the charm of chrysanthemum
growers. In an attempt to develop red colored flowers, He
et al. (2013) down-regulated CmF3'H gene using RNAi
approach and over-expressed the Senecio cruentus F3'5H
(PCFH) gene in chrysanthemum. The transgenic chrysan-
themum plants developed bright red flowers and exhibited
a significantly increased cyanidin content.

Modification of plant architecture
Genetic engineering has succeeded in relevance to modify-

ing plant architecture to satisfy the instinct of beauty of
mankind. Ornamental plants are being grown for the purpose
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of beautifying, embellishing or improving human environ-
ments. Differential expression of a number of diverse genes
in different backgrounds has led to diversification in plant
forms. Reduction in height is a major consideration during
commercial production of chrysanthemum. In an attempt to
reduce plant height, Zheng et al. (2001) ectopically expres-
sed a tobacco phytochrome Bl (PHY-BI) gene in ‘Iridon’
chrysanthemum under the control of CaMV35S promoter.
The transgenic plants developed a short stature as compared
to the wild-type plants looking similar to that caused by the
application of a commercial growth retardant. The leaves of
transgenic plants developed more intense color inferring the
biosynthesis of higher levels of chlorophyll pigment. Later in
2003, Petty et al. reported decrease in chrysanthemum plant
height by introducing Arabidopsis GA insensitive (gai) gene.
In another study, Aida et al. (2008) transferred CAG gene in
antisense orientation into Chrysanthemum morifolium and
observed alteration in gynoecium and androecium to corolla-
like tissues. Khodakovskaya et al. (2009) developed trans-
genic chrysanthemum by transforming ipt (isopentyl trans-
ferase) gene, a cytokinin biosynthetic gene, in an attempt to
change the plant architecture. The transgenic plants were
found shorter in height with more number of flowers, but
with smaller size and late flowering period than the wild-type
plants. In another study, Jiang et al. (2010) reported lessened
branches formation in transgenic chrysanthemum trans-
formed with DgLsL gene in antisense orientation. Dwarfed
transgenic plants of petunia had also been developed by
transforming gai (gibberellic acid insensitive) gene from
Arabidopsis thaliana by Tanaka et al. (2005). Further, Han
et al. (2007) reported that Ls-like sense gene expression in
transgenic carnation resulted in lack of axillary branches
formation. Cultivars of many crops having shorter stems
generally exhibit higher harvest index, offering additional
commercial advantage to the growers. In another study, the
ectopic expression of a PHYA gene in potato plants signifi-
cantly inhibited stem elongation and increased the harvest
index through hypersensitivity to far red (FR) light (Robson
et al. 1996). The potential applications of transgenic tech-
nology for improving quality, color, texture, shelf-life and
plant architecture of horticultural crops have been compiled
in Table 3.

Though at present, transgenic crops are being cultivated
over an acreage of 179.7 m ha by 70-80 million farmers in
28 countries across the globe (ISAAA, 2017), still people
have many more apprehensions in their minds regarding
biosafety, health and environmental risks posed by the
consumption and commercialization of genetically modi-
fied crops. This has led to the development of new tech-
nologies to address such concerns, referred to as marker-
free (Clean-gene) transgenic technology and genome edit-
ing technology.

Marker-free transgenic technology

Generally, the methods of genetic transformation employ
selection markers such as antibiotic resistance genes or
herbicide tolerance genes for the selection of desirable
transgene expression in transformed cells (Bevan et al.
1983; Akama et al. 1995). However, except for the role
as a selectable marker, these genes do not have any
relevant function inside the plant cell and, thus, they
exert an extra burden on the plant genome. Also, the
constitutive expression of these genes encoded proteins
affects the plant metabolism in a negative way. Further,
use of marker genes, particularly those coding for
antibiotic resistance, has been facing a strong criticism
and opposition, particularly in edible crops including
fruits and vegetables. Developing marker-free plants or
finding out suitable alternatives of antibiotic or herbicide
tolerance genes has been proposed with the hope of
increasing consumers’ acceptance for genetically modi-
fied crops. A set of new technologies has been developed
which involve the elimination of marker genes during
transgenic plants development, which come under the
recent molecular advent as ‘Marker-free transgenic
technology’ or ‘Clean-gene technology’. Such technolo-
gies would be helpful to minimize biosafety concerns
during biosafety research trials and the transgenic
products would fetch wider consumer acceptance. Site-
specific recombination has been suggested by many
workers as a potential strategy (Dale and David 1991;
Gleave et al. 1999; Puchta 2000). Hare and Chua (2002)
proposed chemically inducible site-specific recombina-
tion systems as valuable tools for excision of transgenes
when their expressions are not required. De Vetten et al.
(2003) suggested the use of marker-free gene construct
for genetic transformation of potato followed by poly-
merase chain reaction (PCR)-based selection of trans-
formed cells for identification of transformants. Co-
transformation with two gene constructs followed by
segregation of marker gene and gene of interest in seg-
regating generation has been explored. Sun et al. (2009)
devised a strategy to eliminate public concerns regarding
proliferation of antibiotic and herbicide resistance genes
into the environment by constructing a super binary
vector having two T-DNA systems to generate marker-
free transgenic chrysanthemum plants. The vector sys-
tem was designed having two T-DNA regions—one
having hygromycin phosphotransferase (hpt)
selectable marker gene and the other T-DNA containing
p-glucuronidase (uidA) gene, placed adjacent to each
other with no intervening region. A total of 17 hpt-re-
sistant/gus positive T, chrysanthemum plants were
evaluated for segregation in T; generation and among
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those, approximately 15.7% carried the transgene.
Suitability of a twin T-DNA system for generating
marker-free transgenic plants has been established.

For the development of selectable marker-free trans-
genic plants, Multi-Auto-Transformation (MAT) vector
system (Ebinuma et al. 1997), which combines positive
selection using isopentenyl transferase (ipt) gene, the first
enzyme of cyokinin biosynthesis, with a site-specific
recombination (Barry et al. 1984) and removal system
offers a very potential tool (Sugita et al. 1999). Marker
gene is removed from the transformed cells by the mech-
anism of homologous recombination. The MAT vector
backbone is composed of yeast site-specific recombination
R/RS system to excise the DNA fragment and the ipt gene
cloned between two directly oriented recombination sites
(Araki et al. 1987). The MAT vector system has been
employed in a number of crops to develop marker-free
transgenic plants including Antirrhinum majus (Minlong
et al. 2000), citrus (Ballester et al. 2007), Kalanchoe
blossfeldiana (Thirukkumaran et al. 2009) and Petunia
hybrida (Khan et al. 2010). Khan et al. (2011b) used MAT
vector in which ipr gene was used as a selection marker and
Wasabi defensin (WD) gene, isolated from Wasabia
japonica as a target gene, to transform tomato plants. The
marker-free transgenic tomato plants exhibited enhanced
resistance against a number of fungi including Alternaria
solani, Botrytis cinerea, Fusarium oxysporum and Erysiphe
lycopersici. Also, phosphomannose isomerase (PMI) gene
derived from E. coli had been developed as an efficient
positive selection marker for apple transformation, which
induced the capability to grow on mannose supplemented
medium in the transformed cells (Degenhardt and Szan-
kowski 2006; Degenhardt et al. 2007). Further, plastid
engineering has also been advocated as one of the most
viable techniques to avoid transgene spread to other related
crop (non-target species).

Cisgenic crops represent a step towards a new genera-
tion of genetically modified crops. Development of
genetically modified crops, which do not possess any
selectable marker (e.g., antibiotic resistance or herbicide
tolerance) gene in the end product and also, if the inserted
gene is derived from the same organism/plant, would be a
welcome step to increase consumers’ acceptance for that
product and to minimize the environmental risks associated
with genetically modified crops. In this direction, Van-
blaere et al. (2011) developed cisgenic apple plants by
inserting the endogenous scab resistance gene HcrVf2
under the control of its own regulatory sequences into the
scab susceptible apple cultivar ‘Gala’ using R/RS vector
system to develop marker-free transgenic plants. Dhekney
et al. (2011) also used cisgenic approach to develop dis-
ease-resistant apple.
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Genome editing technology in horticultural crop
improvement

Recent technology relies on certain engineered endonucle-
ases (EEN) that cleave DNA in sequence-specific manner
due to the presence of a sequence-specific DNA-binding
domain. These endonucleases recognize specific DNA
sequence and, thus, efficiently and precisely cleave the target
genes. The double-strands breaks (DSBs) of DNA result in
cellular DNA repair mechanisms, including homology-di-
rected repair (HDR) and non-homologous end joining breaks
(NHEJ), leading to gene modification at the target sites in the
genome of plants. Generally, this technology employs three
types of engineered endonucleases viz. Zinc finger nucleases
(ZFNs), TALENs and CRISPR/CaS for site-specific cleav-
age. The CRISPR/Cas9 system has originated from bacteria
and archae (Wiedenheft et al. 2012). CRIPSR/Cas9 is com-
paratively easy to prepare, affordable and can be better
upscaled than ZFNs and TALENs. Cas9-induced double
strand breaks in the plant genome are repaired by non-ho-
mologous end joining (NHEJ) method (Li et al. 2013).
During this repair, small insertions or deletions may occur
disturbing the open reading frame of a protein or introduces a
stop codon (Belhaj et al. 2013). Zinc finger nucleases (ZFNs)
and transcription activator-like effector (TALENS) tech-
nologies of genome editing affected from the disadvantages
of high technical complexity and low efficiency. On the other
hand, the clustered regularly interspersed short palindromic
repeats (CRISPR)-associated protein 9 (CRISPR/Cas9)
technology has revolutionized genome editing by over-
coming the disadvantages of ZFNs and TALENs due to a
high efficiency, low cost involvement, simplicity and ver-
satility (Cardi and Stewart 2016). CRIPSR/Cas9 genome
editing technology will probably avoid the current GM
regulations mechanisms as the Cas9 protein-guide RNA
complexes get rapidly decomposed in the regenerating cell
cultures and thus will broaden the utility of this technology
with greater global acceptance levels in comparison to the
transgenic technology. A gene-edited crop does not neces-
sarily contain any transgene and, thus, does not require very
stringent regulation and thus such crops may find quick
acceptance among consumers (Jones 2015). Precise genome
editing offers a wonderful technology to decipher plant gene
functions and in improvement of crop plants. CRISPR/Cas9
editing tools have been efficiently applied in a number of
horticultural crops including tomato, petunia, citrus, grape,
potato and apple for gene mutation, repression, activation
and epigenome editing (Nishitani etal. 2016; Ren et al. 2016;
Song et al. 2016).

Genome editing in plants has been revolutionized with the
development of CRISPR/Cas9 technology. Recently, this
technology has found application in developing resistance
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against many viruses (Ali et al. 2015; Baltes et al. 2015).
Chandrasekaran et al. (2016) could successfully develop virus
resistance in cucumber using Cas9/subgenomic RNA (sgRNA
technology) to disrupt the function of recessive elF4E
(eukaryotic translation initiation factor 4E) gene. Homozy-
gous T; transgenic cucumber plant which was targeted to both
elF4E sites developed immunity to cucumber vein yellowing
virus (Ipomovirus) infection and resistance to the poty-
viruses—Zucchini yellow mosaic virus and Papaya ring spot
mosaic virus-w. In a recent study, Malnoy et al. (2016)
reported the direct delivery of purified CRISPR/Cas9
ribonucleoproteins (RNPs) targeting to bring mutagenesis in
MLO-7, a susceptible gene in order to increase resistance to
powdery mildew in grape cultivar Chardonnay and DIPM-1,
DIPM-2 and DIPM-4 genes in apple cultivar Golden delicious
to increase resistance to fire blight disease. Tian et al. (2017)
demonstrated the usefulness of genome editing technology,
CRIPSR/Cas9—as a powerful tool to effectively create
knockout mutations in watermelon. They targeted CIPDS
(phytoene desaturase) gene for mutagenesis for developing
albino phenotype. All the transgenic watermelon plants har-
bored CIPDS mutations and developed clear or mosaic albino
phenotype, indicating that CRIPSR/Cas9 system has 100%
genome editing efficiency in transgenic watermelon lines to
introduce new functions. Induction of parthenocarpy has
always been desired in horticultural crop plants for various
industrial purposes and for eating quality. Ueta et al. (2017)
demonstrated a CRISPR/Cas9 system-based breeding strat-
egy to generate parthenocarpic tomato plants. Using CRISPR/
Cas9 system, they could effectively introduce 100% somatic
mutations into SITAA9—a key gene controlling parthenocarpy
in T, tomato plants. Regenerated T, mutants showed mor-
phological changes in leaf shape and seedless fruit, which is a
characteristic of parthenocarpic tomato. In a very recent study,
Kishi-Kaboshi et al. (2017) reported for the first time gene
editing in chrysanthemum using CRISPR/Cas9 system and
developed transgenic chrysanthemum plants expressing the
yellowish-green fluorescent protein (CpYGFP) gene from
Chiridius poppei. Two sgRNAs were selected to target dif-
ferent positions in the CpYGFP gene and they obtained
transgenic calli containing mutated CpYGFP genes (CRISPR-
CpYGFP-chrysanthemum). Finally, the CRISPR-CpYGFP-
chrysanthemum shoot containing a mutation in the CpYGFP
gene was obtained.

Conclusion

The applications of recombinant-DNA technology or
genetic engineering in crop improvement are immense to
solve the problem of global hunger as population is
increasing day by day with depriving sustainable intensifi-
cation. However, horticultural crops have got less attention

in this area so far. In contrast to the increasing global adop-
tion of biotech field crops, biotechnology has limited com-
mercial success to date in horticultural crops including fruits,
vegetables, flowers and landscape plants. At this juncture of
time, we cannot ignore the potential of this technology for the
genetic enhancement of our horticultural crops to combat
various production constraints like biotic or abiotic stresses
and fruit quality improvement. Transgenic technology pro-
vides a potential technique for genetic enhancement using
desirable trait of interest in plants. There is a need to address
various regulatory obstacles for commercial release of var-
ious transgenic crops so that the real benefit of this wonderful
technology may reach the consumers, the end users. After the
advent of Next Generation Sequencing (NGS) technologies,
many horticultural crops including strawberry, papaya,
grapevine, sweet orange, mango, etc. have been sequenced,
which has now solved the problem of lack of genomic
information and thus facilitated the target gene/site to be
modified using genome editing technology. This has also
improved the breeding efficiency as various genes/QTLs
coding for various horticulturally important traits have been
identified. In addition to that, transcriptome sequences of a
number of horticultural crops are now available in public
databases. This vast information will assist in identifying
various genes governing various important traits and will
help in identifying the target sites for genome editing and
genetic transformation.
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