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Chapter

Application and Mechanisms of 
Plant Growth Promoting Fungi 
(PGPF) for Phytostimulation
Md. Motaher Hossain and Farjana Sultana

Abstract

Plant growth-promoting fungi (PGPF) constitute diverse genera of nonpathogenic 
fungi that provide a variety of benefits to their host plants. PGPF show an effective 
role in sustainable agriculture. Meeting increasing demand for crop production 
without damage to the environment is the biggest challenge nowadays. The use of 
PGPF has been recognized as an environmentally friendly way of increasing crop 
production. These fungi have proven to increase crop yields by improving germina-
tion, seedling vigor, plant growth, root morphogenesis, photosynthesis, and flower-
ing through either a direct or indirect mechanism. The mechanisms of PGPF involve 
solubilizing and mineralizing nutrients for easy uptake by plants, regulating hor-
monal balance, producing volatile organic compounds and microbial enzyme, sup-
pressing plant pathogens and ameliorating abiotic stresses. Successful colonization is 
an intrinsic factor for most PGPF to exert their beneficial effects on plants. A certain 
level of specificity exists in the interactions between plant species and PGPF for root 
colonization and growth promoting effects. There is a gap between the number of 
reported efficacious PGPF and the number of PGPF as biofertilizer. Efforts should 
be strengthened to improve the efficacy and commercialization of PGPF. Hence, this 
chapter summarizes valuable information regarding the application and mechanisms 
of PGPF in sustainable agriculture.

Keywords: seed germination, seedling vigor, root morphogenesis, yield,  
root colonization, formulation

1. Introduction

The world’s population exceeded ~7 billion just after 2010, and still continues 
to grow fast. Roughly, 83 million people are added to the world’s population every 
year and with this pace of growth, the global population is projected to reach 
around 9.7 billion by 2050, ~24% higher than today [1]. In order to feed this large 
population, crop production must increase by approximately 25–70% above cur-
rent production levels [2]. Intensification of agriculture is considered a potential 
solution. By relying on intensive use of fertilizers, pesticides and other inputs, 
agricultural intensification increases the productivity of existing farmland and 
delivers more food to the added population. However, the chemical-based crop 
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intensification produces more food in a way that the future production potential 
of farmland is being undermined and the environment is being affected. An 
increasingly degraded soil, overwhelming health hazards from soil and water 
pollution, disturbed natural microbial populations are a few of the direct impli-
cations in chemical-intensive agriculture. To avoid these potentially harmful 
effects of agrochemicals in agriculture, alternative approaches must be per-
suaded. An ecocentric approach that provides both environmental and economic 
benefits is increasingly needed. Organic farming is one of many such approaches 
that promote agroecosystem health, ensuring sustainable intensification in 
agriculture.

The uniqueness of microorganisms and the dynamic part played by them in 
sustaining agricultural ecosystems have made them likely candidates for playing a 
central role in organic-based modern agriculture. Fortunately, plant roots harbor an 
abundant association of beneficial microorganisms. Root exudates are the largest 
source of carbon that attracts the microbial populations and allow them to forge 
an intimate association with host plants [3]. In response, the rhizosphere microbial 
populations play versatile roles in transforming, mobilizing and solubilizing soil 
nutrients, which are crucial for plant growth and development. Among the diverse 
rhizosphere microbial population, fungi known as plant growth promoting fungi 
(PGPF) are receiving a growing attention in recent days. Over the decades, variet-
ies of PGPF have been studied including those belong to genera Trichoderma, 
Penicillium, Phoma and Fusarium [4]. Studies have shown that PGPF modulate plant 
growth and enhance resilience to plant pathogens without environmental contami-
nation [5]. The positive effects of PGPF on plant and environment make them well 
fitted to organic agriculture.

The course of plant growth promotion by PGPF is a complex process and 
often cannot be attributed to a single mechanism. A variety of direct and indirect 
mechanisms, including solubilization of minerals, synthesis of phytohormones, 
production of volatile organic compounds, exploitation of microbial enzymes, 
increases in nutrient uptake, amelioration of abiotic stresses and suppression of 
deleterious phytopathogens are involved. These wide arrays of interconnected 
mechanisms help PGPF maintaining rhizosphere competence and stability in 
host performance. Compared to the large number of PGPF identified in the 
laboratory, only a small fraction of them is in agricultural practice worldwide. 
Inconsistent performance of the inoculated PGPF under field conditions limits 
the commercial application of them. Development of appropriate formulation 
could improve the performance in the field and pave the way for commercializa-
tion of the PGPF. An ideal formulation of PGPF should fit with existing applica-
tion technologies, protect biological actives from stress, ensure viability, remains 
unaffected after storage under ambient conditions, ensure microbial actives in 
the field and be cost effective [6].

Considering the aspects discussed above, the need for superior PGPF to 
supplement inorganic chemical fertilizers as one of the crucial steps of mov-
ing toward organic farming practices has been highlighted. Inclusion of new 
techniques in these processes has been vital to the development of novel PGPF 
applications. This review will therefore attempt to shed light on the recent find-
ings related to the impact of PGPF on plant growth and yield, duration of their 
effects, host specificity of the cooperation, root colonization mechanisms, their 
modes of action and commercial formulation for enhancement of plant growth 
and yield. The knowledge produced from this review could be very useful to 
those who are apprehensive about environmental protection and agricultural 
sustainability.
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2. Plant growth promoting fungi (PGPF)

Plants have intricate relationships with an array of microorganisms, particularly 
rhizosphere fungi and bacteria, which can lead to an increase in plant vigor, growth 
and development as well as changes in plant metabolism [7]. The group of rhizo-
sphere fungi that colonize plant roots and enhance plant growth is referred to as 
PGPF [4]. PGPF are heterogeneous group of nonpathogenic saprotroph fungi. They 
can be separated into endophytic, whereby they live inside roots and exchange 
metabolites with plants directly, and epiphytic, whereby they live freely on the root 

Figure 1. 
Beneficial interaction between plant and plant growth promoting fungi (PGPF). PGPF can modulate plant 
growth and development through the production of phytohormones and volatile compounds. PGPF also 
influence plant nutrition via solubilization of phosphorus and mineralization of organic substrates. PGPF 
modify plant functioning against biotic and abiotic stresses by negating their harmful effects.
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surface and free-living PGPF, which live outside plant cells, i.e., in the rhizosphere 
[5]. PGPF establish a non-obligate mutualism with a broader range of host plants. 
That is why symbiotic mycorrhizal fungi are not considered as PGPF, although 
they are known to improve growth of the plants [8]. Moreover, PGPF encompass 
a diverse taxonomic group in comparison to mycorrhiza. They are often involved 
in a range of complex interactions with plants and develop distinct strategies to 
mediate improvements in seed germination, seedling vigor, plant growth, flower-
ing and productivity of host plants (Figure 1). PGPF are not only associated with 
the root to mediate positive effects on plant growth and development but also have 
beneficial effects on suppressing phytopathogenic microorganisms [9]. Not every 
organism identified as PGPF will improve plant growth under all conditions or 
in association with all plant hosts [10]. Some PGPF biocontrol inoculants usually 
contain necrotrophic mycoparasites such as Trichoderma spp. [11], while a limited 
number such as Sphaerodes mycoparasitica is biotrophic mycoparasitic agent [12]. 
Therefore, PGPF are considered one of the potential active ingredients in both 
biofertilizer and mycofungicide formulation.

3. The nature and composition of PGPF

PGPF are common root-associated and soil-borne fungi from diverse genera. 
Fungi reported as PGPF include Ascomycetes, Basidiomycetes and Oomycetes [5]. 
Some strains of hypovirulent binucleate Rhizoctonia (HBNR) are known to be PGPF 
[13]. PGPF also include isolates of mycelial fungi that do not produce any spores, 
generally known as sterile black fungus (SBF), sterile dark fungus (SDF) and sterile 
red fungus (SRF) [14]. The non-sporulating PGPF are often difficult to identify 
and mostly lack formal taxonomic status. Among the PGPF Aspergillus, Fusarium, 
Penicillium, Phoma and Trichoderma have a wide distribution and are, by far, the 
most extensively reported (Table 1). Each of the genera has a variety of species. 
Aspergillus, Fusarium, Penicillium and Phoma were frequently found in the rhizo-
sphere or in the roots of plants. Instead, Trichoderma were mostly isolated from soil. 
Among the rhizosphere population, PGPF have a high relative abundance. A total 
of 619 (44%) out of 1399 fungal isolates collected from rhizosphere of six different 
plants were PGPF, while frequency of occurrence of PGPF in zoysiagrass, wheat, 
corn and eggplant rhizosphere were 46, 47, 38 and 10%, respectively [4]. This 
indicates that abundance of PGPF varies largely according to the host rhizosphere. 
Similarly, the dominating fungal genus is not necessarily the dominating PGPF in 
the rhizosphere population. The order of the frequency of the main genera among 
1399 fungal isolates was Fusarium > Trichoderma > sterile fungi > Penicillium >  
Pythium > Rhizoctonia > Mucor, while that of PGPF from each plant genus 
was: Trichodema (~82%) > Pythium (~75%) > Penicillium (~69%) > Alternaria 
(~63%) > Fusarium (~44%) > sterile fungi (40%) > Mucor (~38%) [4]. The impor-
tant characteristics of these fungi are their high rhizosphere competence and ability 
to promote plant growth.

Initial search for identification of PGPF was concentrated to rhizosphere fungi. 
Recent studies have demonstrated the potential of phyllosphere fungi as PGPF. The 
phyllosphere, which consists of the above ground surfaces of plants, is one of the 
most prevalent microbial habitats on earth. Phyllosphere fungi can act as mutualists 
promoting plant growth and tolerance of environmental stressors [53]. A few of 
other fungi isolated from tree bark, decorticated wood and water damaged building 
functioned as PGPF [43, 49]. More interestingly, the fungal entomopathogens also 
show potential to be PGPF and promote plant growth [54]. PGPF seem to have a 
cosmopolitan occurrence.
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4. Impact of PGPF on plant growth promotion

PGPF exhibit traits beneficial to plant and as such, their capacity to enhance 
plant growth and development is well founded. PGPF mediate both short- 
and long-term effects on germination and subsequent plant performance. 
Improvement in germination, seedling vigor, shoot growth, root growth, photo-
synthetic efficiency, flowering, and yield are the most common effects decreed 
by PGPF. A particular PGPF may condition plant growth by exerting all or one or 
more of these effects.

PGPF Original source of isolation References

Alternaria sp. Zoysia tenuifolia, Rosa rugosa, 
Camellia japonica, Delonix regia, 
Dianthus caryophyllus, Rosa hybrid

[4, 15]

Aspergillus sp., As. fumigatus, As. niger, As. terreus, 

As. ustus, As. clavatus

Capsicum annuum, Glycine max, 

Cicer arietinum, Elymus mollis, 

Solanum tuberosum, Nymphoides 

peltata

[16–21]

Aureobasidium pullulans Dark chestnut soil [22]

Chaetomium globosum Capsicum annuum [23]

Cladosporium sp., Cladosporium sphaerospermum Cucumis sativus, Glycine max [24, 25]

Colletotrichum sp. Rosa rugosa, Camellia japonica, 
Delonix regia, Dianthus caryophyllus, 
Rosa hybrid

[15]

Exophiala sp. Cucumis sativus [26]

Fusarium sp., F. equiseti, F. oxysporum, F. 

verticillioides

Cynodon dactylon, Lygeum spartum, 

Zoysia tenuifolia, Musa sp. and other 
environment

[27–32]

Non-sporulating sterile fungi Zoysia tenuifolia [14]

Penicillium sp., Pe. chrysogenum, Pe. citrinum, 

Pe. kloeckeri, Pe. menonorum, Pe. resedanum, Pe. 

simplicissimum, Pe. janthinellum, Pe. viridicatum

Halophyte, Ixeris repenes, Cicer 

arietinum, Elymus mollis, Capsicum 

annuum, Zoysia tenuifolia

[9, 16, 22, 
33–40]

Phoma sp., Phoma herbarum, Phoma multirostrata G. max, Rosa rugosa, Camellia 

japonica, Delonix regia, Dianthus 

caryophyllus, Rosa hybrid, Zoysia 

tenuifolia

[4, 14, 15, 34, 
41, 42]

Phomopsis sp., Phomopsis liquidambari Rosa rugosa, Camellia japonica, 
Delonix regia, Dianthus caryophyllus, 
Rosa hybrid, Bischofia polycarpa bark

[15, 43]

Purpureocillium lilacinum Soil [44]

Rhizoctonia spp. Orchid, Lycopersicon lycopersicum, 
and soil

[13, 45, 46]

Rhodotorula mucilaginosa Soil [22]

Talaromyces wortmannii Soil [40]

Trichoderma asperellum, T. atroviride,  

T. hamatum, T. harzianum, T. longibrachiatum,  

T. pseudokoningii, T. viride, T. virens

Soil, wood and damaged building [34, 47–52]

Table 1. 
Different fungi reported as plant growth promoting fungi (PGPF) with their original source of isolation.
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4.1 Impact of PGPF on seed germination and seedling vigor

Seed germination and germinant growth are critical developmental periods 
of the young plantlet until it begins producing its own food by photosynthesis. 
Treatment with PGPF, particularly of the genus Aspergillus, Alternaria, Trichoderma, 
Penicillium, Fusarium, Sphaerodes and Phoma has been reported to improve seed 
germination and seedling vigor in different agronomic and horticultural crops 
(Table 2). Scarified seeds inoculated with spores from Aspergillus and Alternaria 
had significant increases in germination of Utah milkvetch (Astragalus utahensis) 
in vitro, and in greenhouse and fall-seeded plots near Fountain Green and Nephi 
[55]. The Aspergillus-treated seeds performed out seeds inoculated with Alternaria. 
An increase of 30% in seedling emergence was observed in cucumber plant raised 
upon the treatment of T. harzianum [47]. Application of T. harzianum also signifi-
cantly increased seed germination, emergence index, seedling vigor and successful 
transplantation percentage in muskmelon compared to the untreated controls 
[59]. Early seedling emergence and enhanced vigor were observed in bacterial wilt 
susceptible tomato cultivar treated with T. harzianum, Phoma multirostrata, and 
Penicillium chrysogenum compared to untreated controls [34]. The culture filtrate 
of Penicillium was as effective as the living inocula in improving seed germination 
of tomato [70]. Significantly, higher germination and vigor index were observed in 
Indian spinach, when seeds were sown in sterilized field soil amended with wheat 
grain inoculum of Fusarium spp. PPF1 [27]. Sphaerodes mycoparasitica, a biotrophic 
mycoparasite of Fusarium species, improved wheat seed germination and seedling 
growth in vitro compared to T. harzianum, while under phytotron conditions, both 
S. mycoparasitica and T. harzianum had positive impact on wheat seedlings growth in 
the presence of F. graminearum [12]. These results show the positive impact of PGPF 
on seed germination and seedlings growth of a wide arrays of hosts.

4.2 Impact of PGPF on shoot growth

The most common form of growth promotion by PGPF is the augmented shoot 
in colonized plants. Shoot growth promotion has been shown by a great diversity 
of PGPF across a large number of plant species. Isolates of Aspergillus, Trichoderma, 
Penicillium, and Fusarium were capable of enhancing the shoot growth in model 
plant Arabidopsis [9, 20, 28, 33, 48]. Different species of Aspergillus are known to 
support shoot growth in chickpea [16], Chinese cabbage [56], cucumber [17], soy-
bean [18, 65] and wheat [76]. Species of nonpathogenic Fusarium were reported to 
stimulate shoot growth in Indian spinach [27] and banana [29]. Application of barley 
grain inoculum of Penicillium viridicatum GP15-1 to the potting medium resulted 
in 26–42% increase in stem length, 37–46% increase in shoot fresh weight and 
100–176% increase in shoot dry weight of cucumber plants [35]. Similarly, inocula-
tion of cucumber plants with Pe. menonorum KNU3 increased cucumber shoot dry 
biomass by as much as 52% [36]. Stimulated shoot growth by Penicillium spp. was 
also reported in tomato [69], Waito-c rice [37, 38], chili [23, 39] and sesame [74]. 
Application of T. longipile and T. tomentosum increased shoot dry weight of cabbage 
seedlings by 91–102% in glasshouse trials [57]. Likewise, cottonseeds pretreated with 
T. viride showed four-fold increases in shoot length elongation and an almost 40-fold 
increase in plant dry weight compared to the control [66]. Augmented shoot growth 
by Trichoderma has also been reported in chickpea [16], wheat [79], maize [78], 
cucumber [60] and other plant species (Table 2). Isolates of Phoma were found to be 
an efficient stimulator of plant shoot [15, 41, 62]. A few hypovirulent Rhizoctonia iso-
lates were able to induce significantly higher fresh leaves and stems weights in tomato 
plants grown in greenhouse [13]. Enhancement of shoot growth was also observed 



7

Application and Mechanisms of Plant Growth Promoting Fungi (PGPF) for Phytostimulation
DOI: http://dx.doi.org/10.5772/intechopen.92338

Test crop PGPF strain Improvement References

Arabidopsis 

thaliana

Trichoderma virens Gv. 29-8 Biomass, lateral root 
development

[48]

Penicillium janthinellum GP16-2 Shoot biomass, leaf number [33]

Pe. simplicissimum GP17-2 Shoot biomass, leaf number [9]

Fusarium oxysporum NRRL 
38499, NRRL 26379 and NRRL 
38335,

Shoot-root growth [28]

Aspergillus ustus Shoot growth, lateral root, root 
hair numbers

[20]

Astragalus 

utahensis

Aspergillus spp., Alternaria spp. Seed germination [55]

Basella alba Fusarium spp. PPF1 Germination, seedling vigor, 
shoot-root growth, leaf area, leaf 
chlorophyll content

[27]

Brassica 

campestris

Talaromyces wortmannii FS2 Shoot fresh weight [40]

B. chinensis A. niger 1B and 6A Plant dry weight, N and P content [56]

B. oleracea var. 
capitata

T. longipile, T. tomentosum Shoot dry weight, leaf area [57]

Capsicum 

annuum

Pe. resedanum LK6 Shoot length, biomass, 
chlorophyll content, 
photosynthesis

[39]

Chaetomium globosum CAC-1G Plant biomass, root-shoot growth [23]

Cicer arietinum A. niger BHUAS01, Pe. citrinum 
BHUPC01, T. harzinum

Plant growth [16]

T. harzianum T-75 Yield [58]

Cucumis melo T. harzianum Bi Germination, seedling health, 
vigor

[59]

Cucumis sativus Pe. simplicissimum GP17-2 Root-shoot growth [4]

Pe. viridicatum GP15-1 Root-shoot length, biomass [35]

T. harzianum GT3-2 Root-shoot growth [60]

F. equiseti GF19-1 Root-shoot growth [61]

Aspergillus spp. PPA1 Root-shoot length, biomass, leaf 
area, chlorophyll content

[17]

Exophiala sp. LHL08 Plant growth under drought and 
salinity

[26]

Phoma sp. Root-shoot growth, yield in the 
field

[62]

Phoma sp. GS8-2, GS8-3 Root-shoot growth [63]

GiSeLa6® 
(Prunus cerasus 

× P. canescens)

T. harzianum T-22 Root growth, development [64]

Glycine max A. fumigatus HK-5-2 Shoot growth, biomass, leaf 
area, chlorophyll contents, 
photosynthetic rate

[65]

A. fumigatus LH02 Shoot growth, biomass, leaf 
area, chlorophyll contents, 
photosynthetic rate

[18]

Phoma herbarumTK-2-4 Plant length, biomass [41]

Gossypium 

arboreum L

T. viride Root-shoot length, plant dry 
weight

[66]
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by Talaromyces wortmannii in cabbage [40], Chaetomium globosum in chili [23], 
Colletotrichum sp. in tobacco and Exophiala sp. in cucumber [26]. The results from 
these studies are consistent with numerous field and growth chamber experiments 
that have shown that PGPF inoculants can mediate shoot growth improvement.

Test crop PGPF strain Improvement References

Helianthus 

annuus

Trichoderma sp., Aspergillus 
sp., Penicillium sp., Phoma sp., 
Fusarium sp.

Seed germination, seedling vigor [67]

Lactuca sativus F. oxysporum MSA 35 Root-shoot growth, chlorophyll 
content

[68]

Lycopersicon 

lycopersicum

T. harzianum TriH_ JSB27, 

Phoma multirostrata PhoM_
JSB17, T. harzianum TriH_ JSB36, 

Pe. chrysogenum PenC_ JSB41

Seedling emergence, vigor [34]

T. harzianum T-22 Seed germination under stress [69]

Penicillium spp. Seed germination, root-shoot 
growth

[70]

F. equiseti GF19-1 Plant biomass, root-shoot growth [71]

Musa sp. F. oxysporum V5W2, Eny 7.11o, 
Emb 2.4o

Yield [29]

Nicotiana 

tabacum

Alternaria sp., Phomopsis sp., 
Cladosporium sp., Colletotrichum 
sp., Phoma sp.

Root-shoot growth, chlorophylls, 
soluble sugars, plant biomass

[15]

Pinus sylvestris 
var. mongolica

T. harzianum E15, T. virens ZT05 Seedling biomass, root structure, 
soil nutrients, soil enzyme 
activity

[72]

Saccharum 

officinarum

T. viride Yield [73]

Sesamum 

indicum

Penicillium spp. NICS01, DFC01 Root-shoot growth, chlorophylls, 
proteins, amino acids, lignans

[74]

Solanum 

tuberosum

A. ustus Root-shoot growth, lateral root, 
root hair numbers

[20]

Spinacia 

oleracea

F. equiseti Plant biomass, root-shoot growth [75]

Suaeda 

japonica

Penicillium sp. Sj-2-2 Plant length [38]

Cladosporium sp. MH-6 Shoot length [24]

Pe. citrinum IR-3-3 Root-shoot length [37]

Phoma herbarum TK-2-4 Plant length [41]

Triticum 

aestivum

T. harzianum, T. koningii Plant biomass, root-shoot 
growth.

[4]

Sphaerodes mycoparasitica Seed germination, seedling 
growth

[12]

A. niger NCIM Shoot and total plant length ratio [76]

Vinca minor T. harzianum Flowering, plant height, weight [77]

Zea mays T. harzianum T22 Shoot growth, area and size of 
main and secondary roots

[78]

Table 2. 
Effect of different plant growth promoting fungi (PGPF) on seed germination, plant growth and yield in 
various plants.
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4.3 Impact of PGPF on photosynthesis

The plant growth promotion in some plant-PGPF interaction is occasionally 
associated with improvement in state and function of the photosynthetic appa-
ratus of plants. Treatment with T. longipile and T. tomentosum increased leaf area 
of cabbage by 58–71% in glasshouse trials [57]. Tomato plants grown with HBNR 
isolates had significantly higher leaf fresh weight than control plants in greenhouse 
[13]. Arabidopsis grown in soil amended with Pe. simplicissimum GP17-2 and 
Pe. janthinellum GP16-2 were more greener and had approximately 1 more leaflet 
per plant than control plants 4 weeks after treatment [9]. Penicillium spp. also 
enhanced leaf chlorophyll content in cucumber and chili [36, 39]. Soil amendment 
with Aspergillus spp. PPA1 and Fusarium spp. PPF1 significantly increased leaf area 
and leaf chlorophyll content in cucumber and Indian spinach, respectively [27]. 
Improvement in leaf number, leaf area and leaf chlorophyll levels would contribute 
to increases in photosynthesis rate and net accumulation of carbohydrate in plants.

4.4 Impact of PGPF on root growth and architecture

Roots are vital plant organs that remain below the surface of the soil. The root 
system is important for plant fitness because it facilitates the absorption of water 
and nutrients, provides anchorage of the plant body to the ground and contributes 
to overall growth of plants. Root functions as the major interface between the 
plant and the microbes in the soil environment. The bulk of previous studies have 
evidenced the immense ability of PGPF in enhancement of root growth in different 
plants (Table 2). Plants forming association with PGPF show faster and larger root 
growth resulting in a rapid increase in the root biomass [27, 35, 50, 57]. Moreover, 
root length, root surface area, root diameter and branch number are under 
direct influence of intimate interaction with PGPF. Application of T. virens ZT05 
increased root length, root surface area, average root diameter, root tip number 
and root branch number of pines by 25.11, 98.19, 5.66, 45.89 and 74.42%, respec-
tively [72]. A. ustus is known to cause alterations in the root system architecture 
by promoting the formation of secondary roots in Arabidopsis and potato [20]. 
In maize (Zea mays), Trichoderma inoculation enhanced root biomass production 
and increased root hair development [78]. The abundance in root hair formation 
significantly increases root surface area, suggesting that PGPF inoculants could 
enhance the potential for plant roots to acquire nutrients under nutrient-limited 
conditions.

4.5 Impact of PGPF on flowering

The application of PGPF may influence the number, size and timing of flower in 
flowering plants. Tagetes (marigolds) grown with companion of Pe. simplicissimum 
flowered earlier and had greater flower size and weight [80]. Steamed or raw soil 
infested with T. harzianum hastened flowering of periwinkle and increased the 
number of blooms per plant on chrysanthemums [77]. Under greenhouse conditions, 
T. harzianum TriH_ JSB27 and Pe. Chrysogenum PenC_ JSB41 accelerated the flower-
ing time in tomato [34]. Similarly, root colonization by the nematophagous fungus 
Pochonia chlamydosporia hurried flowering in Arabidopsis thaliana [81]. Root colo-
nization by Piriformospora indica also results in early flowering in Coleus forskohlii, 
bottle gourd and Nicotiana tabacum [82]. Flowering time has commercial significance 
for crops and ornamental plants by shortening crop duration and improving pro-
ductivity. A short duration crop would have several advantages over a long duration 
crop, even with equal total yields such as require less water, expose less to stresses and 
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increase the availability of the land for subsequent cropping. This indicates that PGPF 
improve the plasticity of complex plant traits.

4.6 Impact of PGPF on yield

PGPF show promising ability to promote growth through extensive improve-
ments and betterment of fundamental processes operating in the plants, all of 
which directly and indirectly contributes to the crop yield increase. Inoculation 
of banana (cv. Giant Cavendish and Grand Nain) with F. oxysporum resulted in 
20–36% yield increase in the field [29]. Soil treatment with T. harzianum alone or in 
combination with organic amendment and fungicide significantly improved seed 
yield in pea [83] and chickpea [58]. Similarly, soil treatment with T. viride produced 
significantly the highest number of fruits per plant, number of seeds per fruit, fruit 
weight and dry weight of 100 seeds as compared to untreated control [84]. The ben-
eficial association of plants with nonpathogenic binucleate Rhizoctonia spp. resulted 
in increase in yield of carrot, lettuce, cucumber, cotton, radish, wheat, tomato, 
Chinese mustard and potato [13, 45, 46]. These results demonstrate that PGPF hold 
great promise in the improvement of agriculture yields.

5. Duration of sustained plant growth promotion effect by PGPF

The duration of biofunctional activities of PGPF in plants is a key factor for 
their effective application in the field. Naturally, a legitimate question may arise 
whether PGPF isolates that have shown promising effects on early growth stage 
of plants, could also affect the middle or late ontogenetic stages and ultimately 
contribute to yield increases at harvest. As for potato, an increase in leaf, shoot, 
and tuber weight was observed by a nonpathogenic isolate (No. 521, AG-4) of 
Rh. solani 63–70 days after planting, while it was not expressed in yield at harvest 
[85]. Conversely, increased growth responses of wheat plants treated with PGPF 
were observed during seedling (2 weeks after sowing), vegetative (4 weeks), pre-
flowering (6 weeks), flowering (10 weeks) and seed maturation stages (14 weeks) 
[4]. The isolates of Phoma sp. (GS6-1, GS7-4) and non-sporulating fungus (GU23-
3), increased plant height, ear-head length and weight, seed number and plant 
biomass at harvest [79]. Again, isolates of Phoma sp. and non-sporulating fungus 
significantly increased plant length, dry biomass, leaf number and fruit number 
of cucumber cv. Jibai until 10 weeks post planting in greenhouse trials [62]. 
These isolates were equally effective in promoting growth and increasing yield of 
cucumber at 6 and 10 weeks post planting in the field [62]. There are other PGPF, 
which as well have shown the ability to confer long-term growth benefits to differ-
ent plants. Rice and pea plants inoculated with Westerdykella aurantiaca FNBR-3, 
T. longibrachiatum FNBR-6, Lasiodiplodia sp. FNBR-13 and Rhizopus delemar 
FNBR-19 showed a stimulatory increase of growth for 8 weeks in the greenhouse 
[86]. Similarly, a single inoculation with inoculum of Penicillium and Pochonia 
affected the whole life cycle of tomato and Arabidopsis, respectively, accelerating 
the growth rate, shortening their vegetative period and enhancing seed maturation 
[34, 81]. As such, majority of PGPF strains are able to induce sustained beneficial 
effects on plant growth. The basis of sustained effects of PGPF on plants is not 
fully understood. One possibility is that the fungus continues to colonize the root 
system and establishes a life-long colonization with crop roots. The ability of PGPF 
to confer sustained benefit to plant is of great agriculture importance in terms of 
improving crop yield.
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6. Host specificity of the plant growth-promoting cooperation

Although plants harbor a diverse community of fungi, a preferential interaction 
exists between certain PGPF and a particular host. Once a particular host mutualizes 
this fungus, it undergoes host-specific adaptations. The outcome of such adaptations 
is a highly specialized and finely tuned mutualism, leading to improved responsive-
ness to each other needs. Evidences show that PGPF that induce growth in one plant 
species do not necessarily have the same effect in other species [5]. Some PGPF exert 
general growth promotion effects in several plant species, other fungi only do so in 
specific host plant. A field study showed that most of eight non-sporulating PGPF 
isolates enhanced the growth of one wheat variety, whereas a few isolates enhanced 
the growth of the other variety [87]. Moreover, at least four isolates increased yields 
of both varieties. Thus, the efficacy of the PGPF isolates depended upon the wheat 
variety in addition to their inherent growth promoting abilities. Similarly, many of 
the zoysiagrass PGPF isolates promoted growth of bentgrass [4], in contrast to a 
few isolates enhanced growth in soybean [88]. Similarly, nine isolates belonging to 
Phoma sp. and one non-sporulating fungus caused consistent plant length enhance-
ment in cucumber cv. Shogoin fusiharii compared to nine isolates except the non-
sporulating fungus in cv. Aodai Kyuri. Again, plant length enhancement in cv. Jibai 
was shown by eight Phoma sp. and one non-sporulating fungus compared to five 
Phoma sp. isolates in cv. Ociai fushinari [62]. Identically, Pe. simplicissimum GP17-2 
and F. equiseti 19–1 demonstrated sufficient growth-promoting effects on different 
host plants [4, 9, 60], but did not have effect on Lotus japonicas [89]. The outcome 
of the plant-PGPF interaction, therefore, depends on the plant and PGPF species. 
It is likely that the specific interaction develops during long-term co-evolution, as it 
has been observed for compatible and incompatible interactions of pathogens with 
plants [90]. Moreover, certain components of root exudates may attract and interact 
microbe specifically and allow it colonize the roots.

7. Mechanisms of plant growth promotion

The course of plant growth promotion by PGPF is complex and often cannot be 
attributed to a single mechanism. Various mechanisms that are known to modulate 
plant growth and development can be either direct or indirect. Direct growth 
promotion occurs when substances produced by the fungi or nutrient available by 
them facilitate plant growth. On the other hand, the ability of fungi to suppress 
plant pathogens and to ameliorate stress are considered major indirect mechanisms 
of plant growth promotion by PGPF. A particular PGPF may affect growth and 
development of plants using one or more of these mechanisms (Table 3).

7.1 Phosphate solubilization

Phosphorus is the second most important and frequently limiting macronutrient 
for plant growth and productivity. It is an important component of the key macro-
molecules in living cells and thereby, required for wide array of functions necessary 
for the survival and growth of living organisms. Despite the abundance of phospho-
rus in agricultural soils, the majority occurs in an insoluble form. Phosphorus forms 
complex compounds by reacting with iron, aluminum or calcium depending on 
the soil types and becomes insoluble and unavailable to plants [102]. To circumvent 
this problem, phosphate-solubilizing PGPF can play an important role dissolving 
insoluble P into the soluble form and making it available for plants. PGPF produce 
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Mechanisms Specific activities PGPF strain References

Phosphate 
solubilization

Solubilized P by acid phosphatase and 
alkaline phosphatase

F. verticillioides RK01, 
Humicola sp. KNU01

[30]

Solubilized P from rock phosphate and 
Ca-P by organic acid

A. niger 1B and 6A [56]

Solubilize P from tricalcium phosphate 
(TCP)

A. niger BHUAS01, Pe. 

citrinum BHUPC01, 
 T. harzinum

[16]

Solubilized P by organic acid activities Pe. oxalicum NJDL-
03, Aspergillus niger 
NJDL-12

[91]

Phytase-mediated improvement in 
phytate phosphorus

A. niger NCIM [76]

Increased HCO3-extractable P (23% 
increase)

Pe. bilaiae RS7B-SD1 [92]

Mineralization  
of organic 
substrate

Increased production of NH4-N and 
NO2-N in soil

T. harzianum GT2-1,  
T. harzianum GT3-1

[4]

Increased availability of ammonium 
nitrogen from barley grain

Phoma sp.GS6-1, GS6-
2, GS7-3, GS7-4, GS8-6, 
GS10-1, GS10-2, sterile 
fungus GU23-3

[87]

Solubilize minerals such as MnO2 and 
metallic zinc

T. harzianum Rifai 
1295-22

[93]

Increased availability of ammonium 
nitrogen from barley grain

Phoma sp. GS8-1, GS8-
2, GS8-3, Sterile fungus 
GU21-1

[62]

Increased concentration of Cu, P, Fe, 
Zn, Mn and Na in roots
Increased concentration of Zn, P and 
Mn in shoot

T. harzianum strain 
T-203

[47]

Increased soil organic carbon, N, P and 
K content

T. viride [73]

Increased availability of macro and 
micronutrients and organic carbon

T. harzianum strain 
Th 37

[94]

Phytohormone 
and enzyme 
production

Auxin-related compounds (indole-3-
acetic acid, IAA)

T. virensGv. 29-8 [48]

Gibberellins (GA1 and GA4) production A. fumigatus HK-5-2 [65]

GAs production Pe. resedanum LK6 [39]

GAs production Penicillium sp. Sj-2-2 [38]

GAs production Cladosporium sp.MH-6 [24]

GAs production Pe. citrinum IR-3-3 [37]

GAs and IAA production Chaetomium 

globosumCAC-1G
[23]

GAs production Exophiala sp. LHL08 [26]

GAs production Phoma herbarum 
TK-2-4

[41]

GAs production A. fumigatus HK-5-2 [65]

GAs production A. fumigatus LH02 [18]

IAA production T. harzianum T-22 [64]

Zeatin (Ze), IAA, 
1-aminocyclopropane-1-carboxylic acid 
(ACC)

T. harzianum [95]
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phosphate-solubilizing enzymes such as phytases and phosphatases and organic 
acids, which liberate P from insoluble phosphates. The most efficient phytase and 
phosphatase producing PGPF belong to the genera Aspergillus, Trichoderma, and 
Penicillium [103]. The order in terms of phytate hydrolysis efficacy was Aspergillus >  
Penicillium > Trichoderma [104]. Fusarium verticillioides RK01 and Humicola sp. 
KNU01 solubilized phosphate by increasing activities of acid phosphatase and alka-
line phosphatase, and promoted soybean growth significantly [30]. The phosphate 
solubilizing fungi possess greater phosphorus solubilization ability than bacteria, 

Mechanisms Specific activities PGPF strain References

Suppression 
of deleterious 
pathogens

Suppressed damping off caused by 
Pythium irregular, Pythium sp., Pythium 

paroecandrum, Pythium aphanidermatum 
and Rhizoctonia solani AG4

Sterile fungus GSP102, 
T. harzianum GT3-2, 
F. equiseti GF19-1, Pe. 

simplicissimum GP17-2

[4]

Induced systemic resistance against 
Colletotrichum graminicola

T. harzianum T22 [78]

Suppressed bacterial wilt disease caused 
by Ralstonia solanacearum

T. harzianum 
TriH_ JSB27, 

Phoma multirostrata 
PhoM_ JSB17, T. 

harzianum TriH_ JSB36, 

Pe. chrysogenum 
PenC_ JSB41

[34]

Suppressed Fusarium wilt caused by 
Fusarium oxysporum f. sp. ciceris

T. harzianum T-75 [58]

Suppressed Fusarium graminearum Sphaerodes 

mycoparasitica

[12]

Suppressed damping off caused by 
Rhizoctonia solani AG4

Pe. viridicatum GP15-1 [35]

Suppressed nematodes Pratylenchus 

goodeyi and Helicotylenchus multicinctus

F. oxysporumV5W2, 
Eny 7.11o and Emb 2.4o

[29]

Suppressed seedling mortality by 
Rhizoctonia solani

T. harzianum isolate T-3 [83]

Amelioration 
of abiotic stress

Increased tolerance to salt stress T. harzianum T-22 [69]

Mitigation of oxidative stress due to 
NaOCl and cold stress

T. harzianum Rifai 
strain 1295-22

[96]

Enhanced maize seedling copper stress 
tolerance

Chaetomium globosum [97]

Minimized Cu-induced electrolytic 
leakage and lipid peroxidation

Pe. funiculosum LHL06 [98]

Increased tolerance to drought stress T. atroviride ID20G [99]

Volatile organic 
compounds 
(VOCs)

Produced abundant classes of VOCs 
(sesquiterpenes and diterpenes)

F. oxysporum NRRL 
26379, NRRL 38335

[28]

Produced mainly terpenoid-like volatiles 
including β-caryophyllene

Talaromyces wortmannii 
FS2

[40]

Produced 2-methyl-propanol and 
3-methyl-butanol

Phoma sp. GS8-3 [100]

Produced abundant amount of 
isobutyl alcohol, isopentyl alcohol, and 
3-methylbutanal

T. viride [101]

Table 3. 
Different mechanisms of plant growth promotion used by various plant growth promoting fungi (PGPF).
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especially under acidic soil conditions [105]. The main reason is most fungi are 
eosinophilic, and have relatively higher growth in acidic environments than bacteria 
[106]. The acidity has significant influence on organic acid-mediated phosphate 
solubilizing activities of Pe. oxalicum NJDL-03 and A. niger NJDL-12 [91]. However, 
acidification is not always the major mechanism of P solubilization by T. harzianum 
Rifai 1295-22 (T-22), where pH of cultures never fell below 5.0 and no organic acids 
were detected [93]. Some of the reported PGPF such as Aspergillus niger has twin 
abilities of P mineralization and solubilization [104]. The fungus releases P both 
from organic and inorganic sources. These suggests that specific PGPF may have 
specific activity in solubilizing phosphate and making it available for crop growth.

7.2 Substrate degradation (mineralization)

Microorganisms primarily mediate soil nutrient pathways. Microbial mineral-
ization of nutrients from organic matter is crucial for plant growth. Some PGPF 
promote plant growth, but do not produce plant hormones or solubilize fixed 
phosphate. Among Pe. radicum, Pe. bilaiae (strain RS7B-SD1) and Penicillium sp. 
strain KC6-W2, the strongest growth promotion in wheat, medic, and lentil was 
shown by Penicillium sp. KC6-W2, while the only significant P increase (~23% 
increase) was found in Pe. bilaiae RS7B-SD1-treated plants [92]. Similarly, seven 
Trichoderma isolates significantly improved the growth of bean seedlings; despite 
some of them do not possess any of the assessed growth-promoting traits such as 
soluble P, indole acetic acid (IAA) and siderophores [107]. These PGPF are believed 
to encourage plant growth by accelerating mineralization in the soil. Fungi have 
better substrate assimilation efficiency than any other microbes and are able to 
break down complex polyaromatic compounds such lignin and humic or pheno-
lic acids [108]. A close relationship was found between the cellulose and starch 
degradation activity of PGPF for decomposing barley grain and their subsequent 
growth promotion effect in plants [109]. Application of T. harzianum strain Th 
37 increased the availability of macro and micronutrients and organic carbonate 
in the ratoon initiation stage in sugarcane [94]. Colonization of T. harzianum in 
cucumber roots enhanced the availability and uptake of nutrients by the plants 
[47]. Cucumber plants grew better and produced more marketable fruits due to 
an increase in soil nutrients caused by PGPF, and accumulated more inorganic 
minerals like Ca, Mg, and K in aerial shoots [62]. PGPF are also directly involved 
the degradation of the nitrogenous organic materials through ammonization and 
nitrification. Formation of NH4-N and NO2-N in soil was accelerated during soil 
amendment with PGPF-infested barley grains [109]. More interestingly, the fungal 
entomopathogen Metarhizium robertsii, when established as a root endophyte, was 
shown to translocate nitrogen from a dead insect to a common bean plant host, sug-
gesting this PGPF’s potential to acquire mineral nutrients from organic matter and 
promote plant growth [54]. Nutrient release by mineralization could explain why 
PGPF other than mycorrhizae improve plant growth when added to soil.

7.3 Phytohormone production

Phytohormones are involved in many forms of plant-microbe interactions and 
also in the beneficial interactions of plants with PGPF. The commonly recognized 
classes of phytohormones produced by PGPF are the auxins (IAA) and gibberellins 
(GAs) (Table 3). IAA, the most studied auxin, regulates many aspects of plant 
growth, in particular, root morphology by inhibiting root elongation, increasing 
lateral root production, and inducing adventitious roots [48]. The T. harzianum 
T-22-mediated root biomass production and root hair development in maize is 
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believed to operate through a classical IAA response pathway [78]. Similarly, a 
direct correlation exists between increased levels of fungal IAA and lateral root 
development in Arabidopsis seedlings inoculated with T. virens [48].

GAs are well known for their role in various developmental processes in 
plants, including stem elongation. Shoot elongation of waito-c rice seedlings by 
culture filtrates of Pe. citrinum IR-3-3 and A. clavatus Y2H0002 was attributed to 
the activity of physiologically active GAs existing in the culture filtrates [19, 37]. 
Biochemical analyses of Penicillium sp. LWL3 and Pe. glomerata LWL2 culture fil-
trates that enhanced the growth of Dongjiin beyo rice cultivar and in GA-deficient 
mutant Waito-C revealed the presence of IAA and various GAs [110]. Similarly, 
production of bioactive GAs correlated with enhanced growth of Waito-C under 
salinity by Penicillium sp. Sj-2-2 [38]. GA also played key roles during root coloni-
zation by P. indica in pea roots [111].

Another phytohormone through which PGPF mediate plant growth is 
cytokinin, especially the Zeatin. Zeatin production has been documented in 
Piriformospora indica, T. harzianum and Phoma sp., and the fungi that also produce 
other phytohormones [95, 112, 113]. P. indica produces low amounts of auxins, but 
high levels of cytokinins. Trans-Zeatin cytokinin biosynthesis was found crucial for 
P. indica-mediated growth stimulation in Arabidopsis [112]. This evidence suggests 
that PGPF often mediate the various growth and developmental processes in plants 
by influencing the balance of various plant hormones.

7.4 Microbial ACC deaminase

PGPF produces a crucial enzyme ACC (1-aminocyclopropane-1-car-
boxylic acid) deaminase. ACC deaminase cleaves the ethylene precursor, 
I-aminocyclopropane-1-carboxylic acid (ACC), into NH3 (ammonia) and 
α-ketobutyrate [114]. The ACC deaminase regulates the plant growth by cleaving 
ACC produced by plants and thereby minimizing the ethylene level in the plant, 
which when present in high concentrations can lead to a reduced plant growth 
[115]. ACC deaminase is an inducible enzyme encoded by acdS genes of fungi and 
bacteria [116]. ACC deaminase appears to be central to the functional interactions 
of some plant-PGPF. T. asperellum T203 produced high levels of ACC deaminase 
and showed an average 3.5-fold induction of the acds gene [117]. When ACC deam-
inase expression is impaired in the fungus T. asperellum T203, the plant growth 
promotion abilities of this organism are also decreased [51]. The root colonizing 
bacteria T. harzianum T22 no longer promote canola root elongation after its acdS 
gene is knocked out [64]. Production of ACC deaminase was reported in some 
other fungi, which include Issatchenkia occidentalis [118], and Penicillium citrinum 
and a stramnopile, Phytophthora sojae [119, 120]. The ACC deaminase-producing 
microbes have competitive advantages in the rhizosphere over nonproducing 
microorganisms because the enzyme acts as a nitrogen source for them [116]. 
Moreover, bacteria and fungi that express ACC deaminase can lower the impact of 
a range of different stresses that affect plant growth and development [114]. These 
show that ACC deaminase is not only related to plant growth promotion abilities 
of the microbes, but also play additional roles in the rhizosphere.

7.5 Suppression of deleterious microorganisms by PGPF

The key indirect mechanism of PGPF-mediated plant growth promotion is 
through their activities as biocontrol agents. PGPF protect and empower plants 
to resist harmful pathogens and ensure their better growth. The mechanisms by 
which PGPF suppress growth or activity of invading pathogens in crop plants 
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include antibiosis, competition for nutrient and space, mycoparasitism and induced 
systemic resistance (ISR) [121]. PGPF of diverse genera promoted growth of field-
soil grown cucumber by counteracting damping off pathogen Pythium sp. through 
microbial antagonism [4]. Banana plants inoculated with PGPF F. oxysporum sig-
nificantly suppressed nematode pathogens Pratylenchus goodeyi and Helicotylenchus 
multicinctus resulting in up to ~20 to 36% increase in banana yields [29]. The 
mycoparasite Sphaerodes retispora has been reported to improve the plant dry weight 
and to decrease plant mortality in the presence of F. oxysporum [122]. Similarly, 
under phytotron conditions, seed germination, root biomass, total biomass, root 
length, and total length of F. graminearum-infected wheat were noticeably increased 
with the treatments of S. mycoparasitica and T. harzianum, as compared to inocula-
tion with F. graminearum alone. Both mycoparasites prevented colonization and 
reduction in root growth by the pathogen [12]. PGPF compete with the pathogen 
for colonization niche on roots [79]. Other mechanisms of disease suppression by 
PGPF are, therefore, likely to include competition with pathogens for infection 
sites on the root surface. Moreover, there is a long and growing list of PGPF such as 
Trichoderma, Penicillium, Fusarium, Phoma, and non-sporulating fungi, which can 
protect crop plants against pathogens by eliciting ISR [14, 31, 123, 124]. Although 
many fungal strains to act as PGPF and elicit ISR, it is not clear how far both 
mechanisms are connected. These microbes may use some of the same mechanisms 
to promote plant growth and control plant pathogens.

7.6 Rhizoremediation and stress control

The microbial association of plants has a major influence on plant adaptation to 
abiotic stresses such as salinity, drought, heavy metal toxicity, extreme tempera-
tures and oxidative stress. Recent studies indicate that fitness benefits conferred 
by certain PGPF contribute plant adaption to stresses [125]. There are reports of 
enhanced plant growth because of the association of PGPF with plants, even when 
plants are under suboptimal conditions [126]. Root colonization by T. atroviride 
ID20G increased fresh and dry weight of maize roots under drought stress [99]. 
Supplementation of T. harzianum to NaCl treated mustard seedlings showed eleva-
tion by 13.8, 11.8, and 16.7% in shoot, root length and plant dry weight, respectively 
as compared to plants treated with NaCl (200 mM) alone [127]. The fungus Pe. 
funiculosum significantly increased the plant biomass, root physiology and nutri-
ents uptake to soybean under copper stress [98]. These fungi have been known to 
produce plant growth regulators (like GAs and auxins) and extend plant tolerance 
to abiotic and biotic stresses [23, 125]. Recurrently, T. harzianum T22 has little effect 
upon seedling performance in tomato, however, under stress; treated seeds germi-
nate consistently faster and more uniformly than untreated seeds [69]. A few other 
fungi like Microsphaeropsis, Mucor, Phoma, Alternaria, Peyronellaea, Steganosporium, 
and Aspergillus are known to grow well in polluted medium and protect plants 
from adverse effects of metal stress [128]. There are numerous similar examples of 
PGPF ameliorating abiotic stresses and promoting plant growth. Despite significant 
differences between different stresses, cellular responses to them share common 
features. Enhanced resistance of PGPF-treated plants to abiotic stresses is explained 
partly due to higher capacity to scavenge ROS and recycle oxidized ascorbate and 
glutathione [99, 127]. The increase in proline content is found to be very useful in 
providing tolerance to these plants under stress [129]. Both enzymatic (peroxidase, 
catalase, superoxide dismutase, ascorbate peroxidase, monodehydroascorbate 
reductase, dehydroascorbate reductase, glutathione reductase, glutathione 
S-sransferase and gaucol peroxidase), and non-enzymatic (ascorbic acid, reduced 
glutathione, oxidized glutathione) antioxidants are induced by PGPF further 
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enhance the synthesis of these phytoconstituents and defend the plants from 
further damage [127].

7.7 Production of volatile organic compounds (VOCs)

Microorganisms produce various mixtures of gas-phase, carbon-based 
compounds called volatile organic compounds (VOCs) as part of their normal 
metabolism. The comparative analysis of experimental data has shown that volatile 
metabolites make a much greater contribution to the microbial interactions than 
non-volatile ones [130]. Recent studies reveal that VOC emission is indeed a common 
property of a wide variety of soil fungi, including PGPF. Some of these VOCs pro-
duced by PGPF exert stimulatory effects on plants. A PGPF, Talaromyces wortmannii 
emits a terpenoid-like volatile, β-caryophyllene, which significantly promoted plant 
growth and induced resistance in turnip [40]. The identified VOCs emitted by 
Phoma sp. GS8-3 belonged to C4-C8 hydrocarbons, where 2-methyl-propanol and 
3-methyl-butanol formed the main components and promoted the growth of tobacco 
seedlings [100]. These two components were also extracted from PGPR [131]. On the 
other hand, 3-methyl-butanal has been reported from T. viride [101]. The other most 
abundant VOCs from T. viride were isobutyl alcohol, isopentyl alcohol, farnesene 
and geranylacetone. Arabidopsis cultured in petri plates in a shared atmosphere with 
T. viride, without direct physical contact was taller with more lateral roots, bigger 
with augmented total biomass (~45%) and earlier flowered with higher chlorophyll 
concentration (~58%) [101]. Moreover, volatile blends showed better growth promo-
tion than individual compounds [132]. Volatile compounds produced by PGPF are 
also heavily involved in induce systemic resistance toward pathogens [100].

8. Pattern and process of root colonization by PGPF

Root colonization is considered as an important strategy of PGPF for plant 
growth promotion. Root colonization is the ability of a fungus to survive and 
proliferate along growing roots in the presence of the indigenous microflora over 
a considerable period [35]. The fungus that colonizes plant root effectively is more 
rhizosphere competent than others [107]. Rhizosphere competence is a necessary 
condition for a fungus to be an efficient PGPF. Re-isolation frequency of the fungus 
from the colonized roots is an indirect measure of its root colonizing ability and 
thereby, its rhizosphere competence. In such studies, Pe. simplicissimum GP17-2 and 
Pe. viridicatum GP15-1 were re-isolated from Arabidopsis Col-0 roots 3 weeks after 
planting at high frequencies which were found to be >90% (Figure 2). Similarly, 
the re-isolation frequency of Pe. janthinellum GP16-2 from the roots of Col-0 plants 
was recorded to be, on average, 85% [33]. Aspergillus spp. PPA1 was re-isolated 
from the roots of cucumber plants at a frequency of 95–100% 3 weeks after plant-
ing [17], indicating a rapid and efficient root colonization by the PGPF. However, a 
slow root colonization by PGPF was also reported, as it was the case with Phoma sp. 
GS8-2, which achieved maximum colonization on cucumber roots at 10 weeks [62]. 
The relative growth rate of the fungi and roots seems to determine the length of 
time required for maximum root colonization.

Some PGPF selectively colonize host roots and promote growth. Isolates of 
Phoma and sterile fungi showed poor ability to colonize the soybean roots and were 
unable to enhance the growth of soybean [79]. Similarly, T. koningi colonized roots 
and enhanced growth of Lotus japonicas, but Pe. simplicissimum and F. equiseti did 
not [89]. It was observed that T. koningi induced a transient and decreased level 
of defense gene expression in L. japonicas during its entry into the roots, while a 
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stimulated expression of these genes was induced by Pe. simplicissimum and F. equiseti 
[89]. T. koningi resembles symbiotic fungi, while Pe. simplicissimum and F. equiseti 
act similar to fungal pathogens in activating host defense. This shows that legumes 
selectively avoid some PGPF and thus allow only specific PGPF to interfere.

There are also PGPF, in particular, the non-sporulating sterile fungi that lack 
root colonization ability, but they are able to promote growth and yield of plants 
[62, 133]. This indicates that root colonization is not an indispensable condition for 
growth promotion by all PGPF. Some chemical factor(s) produced by them might 
be responsible for growth promotion.

The colonization of the root system of by PGPF is not always homogenous; the 
density of PGPF varies in different parts of the root system. The colonization of 
roots by the majority of PGPF appears to be higher in the upper than in the middle 
and lower root parts of roots, [35, 133]. The lower part was always less colonized 
by PGPF, especially during first 2 weeks of colonization. This is probably due to 
the faster growth of the roots than of the hyphae. Moreover, the main zone of root 
exudation is located behind the apex [134]. However, some PGPF can keep up with 
root growth and colonize the entire root system [35]. Only fungi with large nutrient 
reserves can move to the root and along the root over larger distances [135].

Anatomical data show that PGPF may colonize root tissues internally and 
establish a mutualistic relationship with host. F. equiseti GF19-1 produced abundant 
hyphal growth on the root surface, formed appressoria-like structures and grew in 
the intercellular space, not inside the cell [31]. T. harzianum CECT 2413 exhibited 
profuse adhesion of hyphae to the tomato roots and colonized the epidermis and 
cortex. Intercellular hyphal growth and the formation of plant-induced papilla-like 
hyphal tips were also observed [136]. Hyphae of T. koningi penetrated the epidermis 
and entered the intercellular inner cortex tissues [89]. Sterile red fungus has been 
also demonstrated to invade the inner root regions that helped plants derive nutri-
ents from the soil and protected roots from pathogens [137].

9. Formulation of PGPF

PGPF, especially Trichoderma, have many success stores as plant growth pro-
moting agents and appear to have much potential as a commercial formulation. 
Different organic and inorganic carrier materials have been studied for effective 
delivery of bioinoculants. A talc-based formulation was developed for T. harzianum 
to supply concentrated conidial biomass of the fungus with high colony forming 
units (CFU) and long shelf life [138]. The concentrated formulation provided 
an extra advantage of smaller packaging for storage and transportation, and low 

Figure 2. 
Re-isolation of Penicillium simplicissimum GP17-2 and Penicillium viridicatum GP15-1 at higher 
frequencies from colonized roots of Arabidopsis thaliana ecotype Col-0 3 weeks after sowing.
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product cost as compared to other carriers such as charcoal, vermiculite, sawdust 
and cow dung. Seed application of the formulation recorded significant increase 
in growth promotion in chickpea [138]. Corn and sugarcane bagasse were used as 
potential carriers for Trichoderma sp. SL2 inoculants. The corn formulation of SL2 
significantly enhanced rice seedlings root length, wet weight and biomass com-
pared to inoculum mixed with sugarcane bagasse and control [139]. A spray-dried 
flowable powder formulation was developed for biostimulant Trichoderma strains 
using a CO2 generating dispersant system, based on polyacrylic acid, citric acid and 
sodium bicarbonate, polyvinyl alcohol as adhesives and lecithin as wetting agent 
[140]. Hydrolytic amino acids derived from pig corpses were used in the prepara-
tion of T. harzianum T-E5-containing bioorganic fertilizer. The resulting bioor-
ganic fertilizer supported higher densities of T. harzianum T-E5 and substantially 
enhanced plant growth when applied as a soil amendment [141]. A composted cattle 
manure-based Trichoderma biofertilizer was developed and tested in the field. Plots 
fertilized with biofertilizer had the greatest aboveground biomass of any treatment 
and were significantly more productive than non-amended plots and plots fertil-
ized with any rate of organic fertilizer [142]. Effective formulation of P. indica was 
prepared in talcum powder or vermiculite with 20% moisture. The talcum-based 
formulations performed significantly better as bioinoculant over vermiculite-based 
formulations in glasshouse experiments [143]. These show the feasibility of com-
mercial level production and applicability of different PGPF formulations for plant 
growth promotion in the field.

10. Conclusions

Because of current concerns over the adverse effects of agrochemicals, there is 
a growing interest in improving our understanding of the role and application of 
beneficial microbes in agriculture. The plant-associated growth promoting fungi 
show excellent potential for wider use in sustainable agriculture as they improve 
plant growth and yield in an ecofriendly and cost-effective manner. However, the 
PGPF continue to be greatly underutilized, primarily due to some practical problems 
such as the inconsistency in field performance, which appears to be the greatest 
challenge in the development of microbial inoculants for plant growth until now and 
well into the future. If our understanding of complex rhizosphere environment, of 
the mechanisms of action of PGPF and of the practical aspects of mass production, 
inoculant formulation and delivery increase, more PGPF products will become avail-
able. Knowledge of multiple microbial interaction with different or complementary 
mode of actions is also of extreme value for development of bio-formulation.

Recent advances in biotechnological tools and reliable transformation system 
could be useful in engineering of the PGPF to confer improved benefits to the crop. 
Genetic transformation and overexpression of one or more of the plant growth 
promoting traits that act synergistically may lead to enhanced performance by the 
inoculant. Research may be required periodically in order to evaluate the genetic 
stability and ecological persistence of the genetically modified strain. Efforts should 
be strengthened to foster linkage between investigators and entrepreneurs in facili-
tating technology transfer, promotion and acceptance by end users.
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