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Abstract

The associations between plants and multipurpose plant growth-promoting fungi
(PGPF) have been proven extremely to be beneficial to plants. This review
describes new knowledge about the interactions between plants and their associ-
ated PGPF in determining improved plant growth and induced systemic resis-
tance (ISR) to invading pathogens. It has been shown that fungi of heterogeneous
classes and habitats function as PGPF. The well-known fungal genera Aspergillus,
Fusarium, Penicillium, Piriformospora, Phoma, and Trichoderma are the most
frequently reported PGPF. On comparing the results of different studies, it
appears that plant-PGPF interactions can have positive effects on belowground
and aboveground plant organs. The most commonly reported effects are signifi-
cant improvement in germination, seedling vigor, biomass production, root hair
development, photosynthetic efficiency, flowering, and yield. Some strains have
the abilities to improve plant biochemical composition. It has now known that
PGPF can also control numerous foliar and root pathogens by triggering ISR in
the host plants. These capabilities are driven by their abilities to enhance nutrient
uptake and phytohormone production as well as to reprogram plant gene expres-
sion, through differential activation of plant signaling pathways. The PGPF-
triggered plant growth and ISR responses to pathogen attack may work through
genetype-dependent manner in plants.
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6.1 Introduction

Fertilizers and pesticides are the integral parts of the modern crop production inputs.
Adequate access to pesticides and fertilizers is a prerequisite for smooth agricultural
production and growth. The benefits of synthetic fertilizer and pesticide use in the
crop field have been immense. They reduce crop losses due to nutrient deficiencies,
weeds, diseases, and insect pests. The crop losses due to pests and diseases for eight
of the world’s major crops are estimated at US$244 billion per annum, accounting
for 43% of world production (Oerke 2006), and postharvest losses contribute a fur-
ther 10% (Edwards and Poppy 2009). Thus, the collective effects of increased fertil-
izer and pesticide use coupled with improved varieties and irrigation have
significantly contributed to the improvement of grain yields since the late 1960s
(Otsuka and Larson 2013). Consequently, the grain production per capita and the
food-population balance have substantially been improved in many low-income
countries and lagging regions, especially in Asia. Despite this success, the Green
Revolution has yielded a range of unintended negative consequences on environ-
ment. Excessive use of fertilizer and pesticides has been associated with potentially
highly detrimental effects on nontarget species and soil and water quality. Moreover,
continuous use of pesticides over a long period results in developing resistance of
the pest (Aktar et al. 2009). Overcoming these widespread hazards is a major chal-
lenge in contemporary agriculture, and the problem must be seriously addressed
before their impacts on environment become irremediable.

It is well known that farm practices define the level of food production and,
largely, the state of the global environment. The resource intensive current firm
practices have been proven costly, as the environmental and health costs associated
with fertilizer and pesticide use are higher (Soares and de Souza Porto 2012). Such
big costs have already raised questions about the sustainability of the current pro-
duction system. Sustainability is important as it ensures social, environmental, and
economic acceptability of the farm practices. A sustainable production system relies
on firm practices that seek to protect the environment by making a significant reduc-
tion in environmentally detrimental amounts of chemical inputs to the crop fields,
while ensuring higher firm returns. Needless to say, efforts must be given in favor of
green strategies, which are characterized by the development and diffusion of non-
toxic and/or least-toxic alternatives for plant disease and nutrient management.
Environmentally friendly preparations of multipurpose beneficial microbes seem to
be one of the major substitutes of chemical inputs in agriculture. Currently huge
research inventiveness is underway for the identification and utilization of benefi-
cial microbes for plant growth and disease control.
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Rhizosphere, the narrow zone of soil surrounding and influenced by plant roots,
is a natural habitat for numerous beneficial microorganisms and represents a bio-
logically complex ecosystem on Earth (Mendes et al. 2013). This biologically active
zone is critical for plant-microbe interactions and, as a consequence, for nutrient
cycling, plant growth, and resistance of plants to diseases. During positive plant-
microbe interaction, rhizosphere colonization by soil microorganisms is beneficial
for both plant and the microorganisms. Both partners derive benefits from the inti-
mate association and vitalize each other. The large amount of rhizodeposits released
by the plant roots is a key determinant of microbial activity and community struc-
ture in the rhizosphere (Gahan and Schmalenberger 2014). The rhizosphere
microbes utilize the rhizodeposit carbon as a major energy source for their growth
and development (Denef et al. 2007). Consequently, plant roots can manipulate the
rhizosphere microbiome to its own benefit by selectively stimulating microorgan-
isms with traits that are beneficial to plant growth and health (Mendes et al. 2013).
Mutual interdependence and interplay between the rhizosphere microbiome and the
plant result in the overall quality of plant productivity (Lakshmanan et al. 2014).

The rhizospheric microbial forms vary in diversity, which includes bacteria,
fungi, nematodes, viruses, arthropods, oomycetes, protozoa, algae, and archaea.
Beneficial effect of number of rhizosphere fungi with respect to plant growth pro-
motion has long been known (Hyakumachi 1994). These plant growth-promoting
fungi (PGPF) include species of the genera Aspergillus, Fusarium, Trichoderma,
Penicillium, Piriformospora, Phoma, and Rhizoctonia, which have the natural abil-
ity to stimulate various growth-related traits of plants (Hossain et al. 2007, 2014;
Shoresh et al. 2010). Many studies in dicots and monocots have shown that PGPF
mimic the well-studied plant growth-promoting rhizobacteria (PGPR) in their inter-
action with host plant. As examples, treating seeds with PGPF inoculum can
improve germination and seedling vigor of different plants. They can also induce
longer and larger shoots. Some may exert effect on root development and perfor-
mance. There are PGPF that may stimulate early and vigorous flowering of plants.
Photosynthetic ability of the plant can also be enhanced by PGPF inoculation.
Some PGPF have the ability to increase crop yield. They have also the ability to
stimulate production of host secondary metabolites. These abilities are important to
agriculture.

It is now established that plant growth-promoting activities by PGPF are only a
fragment of their abilities. They also have the abilities to protect plant against the
deleterious microorganisms. Suppression of plant diseases by PGPF can be achieved
in many ways. Some PGPF produce antibiotics, some are parasite, while others
compete with pathogens for food and space. Along with these direct antagonistic
effects against pathogens, PGPF also protect plants by inducing systemic resistance.
Induced systemic resistance (ISR) can be defined as the phenomenon by which
plant exhibits increased level of resistance to broad spectrum of pathogens in a plant
portion distant from the area where PGPF is active, caused by the triggering of
active plant defenses (Pieterse et al. 2014). PGPF reduce the impacts of various
fungi (Fontenelle et al. 2011; Murali et al. 2013; Tohid and Taheri 2015; Nassimi
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and Taheri 2017), bacteria (Hossain et al. 2008a; Yoshioka et al. 2012; Hossain and
Sultana 2015), viruses (Elsharkawy et al. 2012), and nematodes (Gottlieb et al.
2003; Vu et al. 2006) by eliciting ISR. These plant growth-promoting and disease
control abilities are frequently considered to be the basis for how PGPF expedite the
beneficial effects on plant (Fig. 6.1).

Over recent decades, interdisciplinary researches have made significant advances
in understanding how these microorganisms interact with the host plants. It has been
revealed that various signaling cascades modulate interaction of plants with
PGPF. Furthermore, transcript-profiling analysis shows that plant response to PGPF
depends on the complete reprogramming of a high number of genes or proteins in
plants. Current knowledge also suggests that genetic variability in plant genotypes
determines the outcome of phytostimulation and ISR interactions with PGPF. These
illuminate the intensity of the interaction between plant and PGPF and favor the
plasticity of the plant response to fine-tune the precise mechanisms. This chapter
describes recent knowledge regarding PGPF’s abilities and the underlying mecha-
nisms for induction of plant responses.
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Fig. 6.1 Impact of plant growth-promoting fungi (PGPF) on plant growth promotion and disease
suppression. PGPF stimulate shoot growth, root growth, photosynthetic efficiency, flowering, and
yield. PGPF play a role in protection of plants against deleterious microorganisms by inducing
systemic resistance
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6.2  Nature and Diversity of Plant Growth-Promoting Fungi
(PGPF)

Plant growth-promoting fungi (PGPF) are heterogeneous group of nonpathogenic
fungi that are associated with plant and mediate improvements in plant growth and
health. The classification of different fungi as PGPF does not represent any real bio-
logical similarity between fungi. Results from different studies indicate that the fungi
under PGPF may differ distinctly from one another in taxonomy, in habitats, in phys-
iology, and in their interaction with plants. Despite the name, PGPF do not always
increase plant growth (Bent 2006). In reality, a fungus that promotes the growth of a
given plant may not have same effect upon the growth of another plant, or the effect
may vary under different set of environmental conditions. Similarly, not all fungi that
promote plant growth are considered PGPF. For example, symbiotic mycorrhizal
fungi are known to improve growth of the plants, but they are not considered as
PGPFE. Mycorrhizal fungi behave as obligate biotrophs and establish an intimate
association with the roots of most host plants (Mehrotra 2005; Corradi and Bonfante
2012). On the other hand, PGPF are nonsymbiotic saprotrophic fungi that live freely
in the root surface or the interior of the root itself or the rhizosphere. Therefore, the
term PGPF is not any absolute term, rather it is an operational term (Bent 2006).

Microorganisms identified as PGPF have diverse taxonomy. According to the
reported literatures, majority of true fungi characterized as PGPF primarily belongs
to the phylum Ascomycota (Aspergillus, Aureobasidium, Chaetomium,
Cladosporium, Colletotrichum, Exophiala, Penicillium, Trichoderma, Fusarium,
Gliocladium, Phoma, Phomopsis, Purpureocillium, and Talaromyces), and a few of
them belongs to Basidiomycota (Limonomyces, Rhodotorula, Rhizoctonia, and ster-
ile fungi) and Zygomycota (Mucor and Rhizopus) (Table 6.1). A small number, like
Fusarium oxysporum, Colletotrichum, and binucleate Rhizoctonia, is phylogeneti-
cally much related to plant pathogens but lack functional virulence determinants for
many of the plant hosts from which they can be recovered. PGPF in mycelial fungi
that do not produce any spores are known as sterile fungi. Most members in the
Oomycota are usually virulent plant pathogens, while a few are nonpathogenic
(Thines and Kamoun 2010). The nonpathogenic oomycetes Pythium oligandrum
and Phytophthora cryptogea colonized the root ecosystems and acted as PGPF
(Attitalla et al. 2001; Benhamou et al. 2012).

Species of PGPF are ubiquitous saprobes. Most PGPF have origin either in the
soil or in the roots of large host range. On average 44% of the rhizosphere fungal
isolates were PGPF (Hyakumachi 1994). This suggests that large portions of rhizo-
spheric microorganisms are PGPF. However, the frequency of PGPF occurrence in
the rhizosphere varies with crop plants. Some of the fungi that live inside root tis-
sues or endophytes have also diverse positive effects on plant growth and are PGPF
(Wagqas et al. 2015). The most dominant endophyte appears to be Fusarium (25%),
followed by Penicillium (12.5%) and Alternaria (7.5%) (Khalmuratova et al. 2015).
Subsequent studies have also demonstrated the potential of phyllosphere fungi as
PGPF (Limtong and Koowadjanakul 2012; VotiSkova and Baldrian 2013), although
the vast majority of studies have focused on phyllosphere bacteria and, to a lesser
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extent, phyllosphere fungi (Vorholt 2012). However, there are fewer number of
PGPF in the phyllosphere as opposed to the rhizosphere. This is because the phyl-
losphere is a short-lived habitat for microorganisms and, more importantly, the rhi-
zosphere microbes have better nitrogen capacity than those at the phyllosphere
(Mwajita et al. 2013).

6.3 Impact of the PGPF on Plant Growth and Development

Plant growth-promoting fungi are generally believed to be beneficial for all plant
species they associate with, because of their conserved beneficial abilities. PGPF
directly and indirectly influence the growth and productivity of a wide range of host
plants. The reported benefits derivable from plant-PGPF interactions include the
improvements in seed germination rate, seedling vigor, root development and mor-
phogenesis, shoot growth, yield, photosynthetic efficiency, flowering, and plant
composition (Table 6.2). Recent studies have reported that certain PGPF strains
promote plant growth through the production of plant growth-promoting com-
pounds such as phytohormones and volatiles (Harman et al. 2004; Naznin et al.
2013). Plant growth promotion by PGPF may also variously arise from enhanced
nutrient availability, amelioration of abiotic stresses, and antagonism to phytopatho-
gens (Wakelin et al. 2007; Hossain et al. 2014). PGPF, most likely, stimulate plant
growth through one or more of these remarkably diverse arrays of mechanisms.

6.3.1 Seed Germination and Seeding Vigor

The beneficial effects of PGPF are observed from the very early stage of plant
development influencing germination and seedling growth. Various species of PGPF
differ greatly in their effect on seed germination and seedling growth. Cucumber
seeds sown in soil amended with 7. harzianum propagules showed a ~ 30% increase
in seedling emergence, 8 days after sowing (Yedidia et al. 2001). A significant
increase in early seedling emergence and vigor was observed in tomato after seed
priming with 7. harzianum TriH_JSB27, Phoma multirostrata PhoM_JSB17, T.
harzianum TriH_JSB36, and Pe. chrysogenum PenC_JSB41, T. harzianum Bi appli-
cation (Jogaiah et al. 2013). Similarly, it was shown that treatment with Trichoderma
spp. SL2 enhanced rice seed germination and vigor (Doni et al. 2014a). As per the
findings of Mushtaq et al. (2012), presoaking of seeds in the culture filtrates of the
nine Penicillium isolates was highly effective in significantly increasing seed germi-
nation in tomato when compared with the control seeds. Similar improvement in
seed germination and seedling vigor in different plants was also found with treat-
ment by other PGPF (Vujanovic and Goh 2012; Islam et al. 2014a, b) (Table 6.2).
PGPF colonization at the seed state has been proved to be beneficial for plant
survival and timely seedling establishment (Baskin and Baskin 2004). Fungal iso-
lates belonging to Clonostachys rosea controlled pre- and postemergence death
caused by A. dauci and A. radicina, resulting in a higher number of healthy seedling
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stand in carrot (Jensen et al. 2004; Szopinska et al. 2010). Priming seed with the
same fungus also improved rate and time of seedling emergence in carrot and onion
(Bennett et al. 2009). Maize seed treated with T. harzianum reduced the F. verticil-
lioides and fumonisin incidence and increased the field emergence (Nayaka et al.
2010). Rahman et al. (2015) reported that 7. harzianum seed treatment significantly
contributed to the improvement of plant stand establishment in rice. These demon-
strate that PGPF facilitate seed germination by nullifying adverse effects of danger-
ous seed-borne pathogens (Szopinska et al. 2010). Some PGPF may also function to
overcome seed dormancy. Seed treatment with P. indica culture filtrate was effective
in breaking the seed dormancy of Triticum aestivum, Cicer arietinum, and Phaseolus
vulgaris (Varma et al. 2012). Arredondo et al. (2007) found that Rhizopus sp. was
moderately effective in breaking dormancy of Thelocactus hexaedrophorus seeds.
Olvera-Carrillo et al. (2009) observed that 7-month-old exhumed seeds of Opuntia
tomentosa were colonized by fungal hyphae that penetrated the funicular envelope
through the openings and favored germination of the weak embryo. Delgado-
Séanchez et al. (2011) reported that inoculation of O. streptacantha seed with P.
chrysogenum, Phoma sp., and T. koningii helped to break seed dormancy. Scanning
electron microscopy revealed that these fungi had been able to erode the funiculus,
thus reducing its resistance to germination. It may be possible that enzyme produc-
tion by the fungal hyphae assists in seed stratification or replacement of scarification
process. Fungi may also grow on the testa and erode or crack the hard stony endo-
carp. Consequently, they can potentially reduce mechanical resistance to germina-
tion (Morpeth and Hall 2000). The other possibilities are production of
germination-inducing volatiles and degradation of water-soluble germination inhib-
itors associated with the outer surface of the seed (de Boer et al. 2005).

Orchid seeds also need a fungus for germination in nature. Orchid seeds lack
endosperm and no significant food reserves. Exogenous supply of carbohydrates is
required for orchid seed germination. After the formation of the protocorm, addi-
tional development does not occur until sugar molecules are supplied. Symbiotic
fungi are the main source of sugars. When hyphae are broken, sugars are released
into the orchid cells. The most common genus of fungi that stimulates germination
of orchids and promotes growth of protocorms and seedlings is Rhizoctonia (Chou
and Chang 2004). In addition, Penicillium, Chaetomium, Choanephora, and some
other fungi are also known to stimulate germination in orchid seeds (Baskin and
Banskin 2014). This improvement in germination and seedling vigor is attributed to
the provision of compounds essential to germinating seeds and young plants by
PGPF. Production of hormones such as gibberellins (GAs) and cytokinin (CK) by
the fungi may also have a role in stimulating seed germination (Gupta and
Chakrabarty 2013).
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6.3.2 Shoot Growth

Although PGPF is restricted to roots, there are numerous changes in the phenotypic
responses of shoots, indicating that the effects of these fungi are systemic. There are
numerous field and growth chamber experiments, which have reported the shoot
growth enhancement by PGPF. Members of the genus Aspergillus, Fusarium,
Trichoderma, Penicillium, Rhizoctonia, Exophiala, Phoma, Alternaria, Phomopsis,
Cladosporium, and Colletotrichum were often the most effective in eliciting their
effects on shoot growth (Table 6.2). Shoot growth enhancement has been observed
across a broad range of species, including Arabidopsis, tomato, tobacco, brassica
chinensis, chilli, chickpea, cucumber, Indian spinach, lettuce, maize, melon, ses-
ame, potato, soybean, spinach, wheat, etc. Reported studies have revealed that inoc-
ulation of these plants with PGPF promotes significantly greater shoot length and/
or shoot biomasses in these plants. Application of root endophytic Trichoderma
isolates significantly enhanced plant height of a second-generation energy crop
Miscanthus x giganteus (Chirino-Valle et al. 2016). Similarly, inoculation with a
Pe. menonorum isolate significantly increased the dry biomass of cucumber shoots
(~52%) (Babu et al. 2015). Some species have been shown to produce large-leaved
plants. Cucumber plants inoculated with a PGPF Pe. simplicissimum GP17-2 grew
larger and produce ~1.5-2.0 times larger leaf than normal plants (Fig. 6.2). The
results are in agreement with numerous growth chamber and field experiments,
which have shown that PGPF inoculants can modulate plant shoot growth
(Table 6.2).

Proteomes or genes triggered by PGPF in treated plants exhibit the mechanisms
associated with the enhanced stem and leaf growth. Shoresh and Harman (2008)

1 s T
GP17-2
Fig. 6.2 Seedlings of cucumber cv. Baromashi (21 days old) grown in soil treated with (GP17-2)
or without (control) a PGPF Penicillium simplicissimum GP17-2

Control
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revealed that proteins involved in carbohydrate metabolism were strongly affected
in the shoots due to Trichoderma colonization of maize roots. The important identi-
fied proteins included fructokinase (FRK), Fru-bisphosphate aldolase (FBA),
glyceraldehyde-3-P dehydrogenase (GAPDH), malate dehydrogenase (MDH),
B-glucosidases, 3-phosphoglycerate kinase, and oxalate oxidases. FRK2 from
tomato was shown to be expressed abundantly in leaves and essential for stem
growth and vascular development (Odanaka et al. 2002; Damari-Weissler et al.
2009). Suppression or reduced expression of this gene resulted in smaller cell size
in the xylem and phloem and much shorter plants (Odanaka et al. 2002; Damari-
Weissler et al. 2009). Strong expression of FRK?2 in stems confirms a similar role.
Cotton plants transformed with a tomato fructokinase gene (LeFRKI) had larger
leaf areas and stem diameters (Mukherjee et al. 2015). Increased FBA in plastids
enhances growth of tobacco plants (Uematsu et al. 2012). As a member of the tricar-
boxylic acid cycle, MDH is involved in providing reducing power and is involved in
photosynthetic fixation of CO, (Nunes-Nesi et al. 2005). Single- and double-
knockout mutants of the mitochondrial MDH isoforms in Arabidopsis showed no
detectable MDH activity, and the resulted plants were small and slow growing.
These confirm that activation of carbohydrate metabolism in plants by PGPF con-
tributes to the enhanced shoot growth.

Plant growth-promoting effect of PGPF is not necessarily limited to direct inter-
action of plants with fungi in the rhizosphere. Fungal elicitors such as culture filtrate
produced by PGPF have also demonstrated a strong positive influence on the shoot
growth of plants. Addition of 7. harzianum culture filtrate in the growth medium of
Centella asiatica resulted in significantly higher shoot dry weight (Prasad et al.
2012). Culture filtrate of F. oxysporum and T. viridi also significantly enhanced shoot
growth of Arabidopsis and tomato, respectively (Bitas et al. 2015; Lee et al. 2016).
The presence of gibberellic acids (GA4, GA9, and GA34), indole-3-acetic acid
(IAA), and high concentrations of phosphate in the fungal culture filtrate is respon-
sible for promoting host shoot growth (Khan et al. 2008; Kang et al. 2015). PGPF
species are also abundant producers of small volatile metabolites. Co-cultivating
plants with volatile-producing fungi or exposure of plants directly to volatile organic
compounds (VOCs) induces shoot growth. Fungal VOCs emitted by different spe-
cies and strains of Trichoderma augmented plant biomass and size of Arabidopsis
(Lee et al. 2016). Similarly, tobacco plant growth was enhanced significantly, when
they were grown in the presence of VOCs produced by Phoma sp. (Naznin et al.
2013). The PGPF VOCs have diverse chemical structures and are produced as mix-
ture of hydrocarbons, ketones, amines, thiols, terpenes, alcohols, aldehydes, acids,
ethers, esters, and their derivatives (Korpi et al. 2009; Lemfack et al. 2014; Lee et al.
2016). Their effects on plant growth depend on fungal species, culture conditions,
plant developmental stage, and duration of the exposure (Hung et al. 2013; Lee et al.
2015). It is thought that promotion of plant growth by microbial VOCs is mainly due
to CO, enrichment during co-cultivation (Kai and Piechulla 2009). However, Bitas
et al. (2015) found no significant difference in CO, production among volatile-pro-
ducing and neutral strains of F. oxysporum. Therefore, increased CO, production
solely may not drive plant growth enhancement by PGPF VOCs.
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6.3.3 Root Growth and Performance

The main functions of plant roots are to explore soil and acquire nutrients to support
growth and development of the plant. The plant root system is in closest contact
with soil microbial populations; therefore, the root system functions under the direct
influence of microbial interaction. Many of the reported PGPF have long been
known to significantly enhance the root growth. Plants inoculated with some PGPF
had greater root biomass of the root system than the control plants (Zhang et al.
2012; Vazquez-de-Aldana et al. 2013; Hossain et al. 2014; Islam et al. 2014b). Other
effects associated with PGPF colonization on roots were faster-growing roots and
roots that grew for prolonged periods, causing the development of longer and larger
root systems (Bjorkman et al. 1998; Hossain et al. 2014). Maize roots inoculated
with Trichoderma were deeper, more robust, and had greater surface area (Harman
et al. 2004). Similarly, the treatment of potting medium with barley grain inoculum
of Pe. simplicissimum GP17-2 significantly increased root growth of cucumber
plants, producing a longer and larger root system 3 weeks after planting (Fig. 6.3).
There are also PGPF strains that can cause alterations in the root system architecture
(RSA) of host plants. RSA is a complex notion that captures aspects of root struc-
ture and root shape (Pages 1992). The importance of RSA lies in the fact that it is a
key determinant of nutrient- and water-use efficiency in plants. Moreover, RSA
determines largely the extent of contact and interaction between the plant and the
rhizosphere (Orman-Ligeza et al. 2013). The RSA is evolved from three main pro-
cesses: (1) indeterminate growth of the main root, a process originated by the root
meristem; (2) lateral root (LR) formation; and (3) root hair (RH) formation (Scheres
et al. 2002). Each of the apparatuses that constitute the RSA has distinct roles.
However, LR and RH constitute the most important traits of the root architecture
that facilitate plant anchorage and increase the root’s exploratory capacity for water
and minerals. PGPF are well noted for their effects on LR and RH morphology.

Fig. 6.3 Roots of
cucumber cv. Baromashi
(21 days old) grown in soil
treated with (GP17-2) or
without (control) a PGPF
Penicillium simplicissimum
GP17-2
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Increased root branching via LR formation has been observed as a response to colo-
nization by some PGPF species (Harrison 2005). Trichoderma spp. were highly
efficient in inducing LR production in A. thaliana (Contreras-Cornejo et al. 2009).
Inoculation of As. ustus on A. thaliana and S. tuberosum roots induced an increase
in root growth and LR and RH numbers (Salas-Marina et al. 2011). The dark spot
endophytic fungus EF-37 increased the RH number in Saussurea involucrata (Wu
et al. 2010). RH development was strongly promoted in Chinese cabbage and A.
thaliana by Pi. indica (Lee et al. 2011). On average, Pi. indica colonization resulted
in a ~ 2-fold longer elongation zone, a ~ 1.5-fold thicker epidermal and cortex layer,
and a ~ 1.4-fold higher biomass of the lateral roots, compared with the uncolonized
control (Dong et al. 2013). This basidiomycete alters root growth in a number of
other plant species (Varma et al. 1999; Peskan-Berghofer et al. 2004). Other endo-
phytic fungi also cause similar changes in LR and RH (Malinowsky et al. 1999;
Sasan and Bidochka 2012). There are also fungi that stimulate lateral root formation
and increase root hair length through release of VOCs (Felten et al. 2009).

The mechanisms by which PGPF alter root systems have recently been started to
be dissected at the genetic and molecular levels (Contreras-Cornejo et al. 2009).
Stimulation of LR development seems to be an early phase of interaction in nonphy-
topathogenic, root-colonizing fungi (Felten et al. 2009). Microbial-induced increase
in the number and/or length of LR and RH is thought to be caused by reduction in
growth rate of the primary root (Contesto et al. 2008; Combes-Meynet et al. 2011;
Chamam et al. 2013). Signals originating from the fungi target primarily the meri-
stematic elongation zone in roots and activate the growth-stimulating programs
(Dong et al. 2013). Auxin has a critical role during this developmental process from
founder cell specification to LR emergence (Dubrovsky et al. 2008). However, high
fungal IAA (auxin) production does not always lead to the highest rooting frequency
(Niemi et al. 2002). Similarly, exogenous application of auxin did not stimulate the
morphological changes in Chinese cabbage roots, which were observed after Pi.
indica colonization (Lee et al. 2011). These observations are in line with a study by
Hilbert et al. (2012) which have also demonstrated that production of indole deriva-
tives by the fungus is not required for growth promotion of barley root. Therefore,
the root-stimulating effects are suggested to be mediated by auxin of plants and not
fungal auxin (Lee et al. 2011).

A decrease in CK content was induced by the isolates of Trichoderma that pro-
moted the root growth of melon plants (Martinez-Medina et al. 2014). Sofo et al.
(2011) also observed a significant decrease in trans-zeatin and in dihydrozeatin, two
of the most active CKs in plants shoots and roots, following the inoculation with 7.
harzianum T-22. This indicates that CK has an opposing role in root development,
although major sites of CK synthesis are considered to be root tips (Aloni et al.
2005). Exogenous application of CK at physiological concentrations suppresses
root growth and reverses the TAA effects (Lloret and Casero 2002). A low CK level
in CK-deficient transgenic plants overexpressing the CK oxidase/dehydrogenase
(CKX) genes is seen to cause an enlarged root meristem, formation of LR closer to
the root apical meristem, increased root branching, and promotion of adventitious
root formation (Lohar et al. 2004). Similarly, abscisic acid (ABA) and ethylene (ET)
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cascades share some common features in terms of mediation of root growth. The
concentration of ABA and the ET precursor 1-aminocyclopropane-1—carboxylate
(ACC) was decreased by isolates of 7. harzianum (T-4, T-7, and T-22) (Martinez-
Medina et al. 2014). A low concentration of both promotes root growth, and high
concentrations inhibit root growth (Joshi-Saha et al. 2011; Arc et al. 2013). Previous
studies have demonstrated root that growth inhibition by high concentrations of
ABA requires ET signaling components but not ET production (Beaudoin et al.
2000; Ghassemian et al. 2000). This discussion implies that, as for other physiologi-
cal processes, root growth is usually not regulated by hormonal levels per se but
rather the complex balances between various hormones (Miiller and Leyser 2011).

6.3.4 Photosynthetic Efficiency

The main source of carbon for green plants is photosynthesis. Higher photosyn-
thetic potential may result in increased carbon assimilation in plants, which is the
basis for faster development and higher biomass production. It has been reported
that many of the studied PGPF clearly influence photosynthesis-related mechanisms
in plant allowing to meet elevated energy demands. The changes in leaf architec-
ture, leaf numbers, leaf chlorophyll levels, and photosynthetic rate are often the
effects associated with plant’s response to PGPF colonization. According to earlier
reports, Arabidopsis plants treated with Pe. simplicissimum GP17-2 and Pe. janthi-
nellum GP16-2 increased number of rosette leaves per plant (Hossain et al. 2007,
2008a), while soybean plants inoculated with As. fumigatus sp. LHO2 significantly
increased leaf area, chlorophyll contents, and photosynthetic rate as compared to
non-inoculated plants (Khan et al. 2011b). Similar increases in the content of pho-
tosynthetically active pigments as well as the photosynthesis efficiency were
reported in plants upon different PGPF colonization (Babu et al. 2015; Rozpadek
et al. 2015; Khan et al. 2016; Per et al. 2016). Additionally, the abundance of light-
harvesting chlorophyll a—/b-binding proteins LHCI and LHCII was significantly
higher in Epichloé typhina-treated orchard grass (Rozpadek et al. 2015).

Many of these studies also show that PGPF is utilized to enhance photosynthesis
under suboptimal conditions. Bae et al. (2009) observed increased chlorophyll con-
tents in the drought-tolerant 7. hamatum DIS 219b—colonized seedlings. Metarhizium
anisopliae LHLO7-inoculated soybean plants showed significantly higher chloro-
phyll contents, transpiration rate, photosynthetic rate, and leaf area, under salt stress
as compared to non-inoculated control plants (Khan et al. 2012). Similarly, Pe.
Suniculosum LHLO6 symbiosis increased chlorophyll contents in soybean plan
under Cu stress (Khan and Lee 2013). Root colonization with 7. atroviride TalD20G
improved the chlorophyll and carotenoid synthesis in maize seedlings, contributing
to the alleviation of the drought stress (Guler et al. 2016). PGPF also increase the
chlorophyll content and photosynthetic rate in host plant under pathogen stress
(Vargas et al. 2009; Xia et al. 2016). Loss of chlorophyll and carotenoid contents
under biotic and abiotic stress regimes are frequently the primary causes of inactiva-
tion of photosynthesis (Xia et al. 2016). Hence, the positive effects of PGPF on
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photosynthesis in plants can be ascribed, at least partially, to very efficient use of
light as a consequence of enhanced accumulation of photosynthetic pigments and
improved net photosynthetic rate (Sdnchez-Lopez et al. 2016).

Until recently, little is known about the molecular mechanisms of PGPF-mediated
photosynthesis improvement in plants. PGPF may have the ability to switch the cel-
Iular mechanisms in the shoot, in consequence increasing photosynthetic efficiency.
In order to elucidate the key changes in photosynthesis-related protein levels in
plant shoots, Shoresh and Harman (2008) have examined the expression of proteins
in maize shoot after root colonization by 7. asperellum T-22. Upregulation of four
spots associated with photosynthesis, including two forms of Rubisco large subunit,
Rubisco, and PSII oxygen-evolving complex protein 2, were observed in shoots of
T. harzianum T-22-treated plants. Similarly, Vargas et al. (2009) detected the tran-
scriptional upregulation of two photosynthetic genes, rubisco small subunit (rbcS)
and the oxygen-evolving enhancer 3—1 (0oee3-1), in leaves of maize plants inocu-
lated with 7. virens. Upregulation of rbcS was also identified in the leaves of
Trichoderma-challenged common bean plants (Pereira et al. 2014). The increased
expression of these photosynthesis genes is suggestive of a higher photosynthetic
rate in PGPF treated than control plants. Moreover, photosynthesis is generally sub-
ject to feedback inhibition by elevated sugar levels in plants (Rolland et al. 2006).
Degradation of sucrose inside fungal cells might have a positive effect on the pho-
tosynthesis, as it reduces sugar levels. Vargas et al. (2009) demonstrated that the
upregulation of the photosynthetic genes and photosynthetic rate in leaves were
dependent on sucrose degradation in 7. virens cells during mutualistic association.
Consequently, when Trichoderma colonizes roots, the increased demand of photo-
assimilates alters the carbon partitioning toward the organs, causing a stimulation of
the photosynthetic process in leaves (Vargas et al. 2013). On the contrary, Alternaria
alternata VOC-promoted enhancement of photosynthesis was accompanied by
accumulation of high levels of soluble sugars in the leaves (Sdanchez-Lépez et al.
2016). The lack of photosynthetic inhibition by high sugar content in leaves of
VOC-exposed plants might be due to enhanced CK production, as CKs and sugars
work antagonistically in gene-regulated responses (Kushwah and Laxmi 2014).

6.3.5 Flowering

The application of some PGPF strains seems to influence phenotypic plasticity of
flowering, an important ecological trait for plants and their communities (Forrest
and Miller-Rushing 2010). Although flowering phenology is known to be under
strong genetic control, it also responds to different stimuli including temperature
(Aikawa et al. 2011), water availability (Crimmins et al. 2013), herbivory (Brys
et al. 2011), and pathogen infection (Korves and Bergelson 2003). Similarly, PGPF
have also been found as a possible driver of flowering phenology in plants. It has
shown that root inoculation with PGPF may stimulate flowering time, flower num-
bers, and/or size in the host plant (Table 6.2). Early reports of the effects of the
Trichoderma spp. on floricultural crops indicated that when the fungus was applied
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to soil as a peat-bran formulation, the numbers of flower buds were enhanced in
chrysanthemum and petunia, while early flowering occurred in periwinkle, alys-
sum, and marigold (Chang et al. 1986). Similarly, adding Trichoderma as dried
fermenter to the growing medium of flower plants enhanced the numbers and weight
of flowers in verbena and the numbers of flowers and buds in petunia (Ousley et al.
1994). Early and vigorous flowering was also observed in C. forskohlii after inocu-
lation of its root with Pi. indica (Das et al. 2012). Under greenhouse conditions, two
PGPF T. harzianum TriH_JSB27 and Pe. Chrysogenum PenC_JSB41 induced early
flowering in tomato (Jogaiah et al. 2013). The root-colonizing nematophagous fun-
gus Pochonia chlamydosporia hastened flowering in tomato and Arabidopsis
(Zavala-Gonzalez et al. 2015). Plants grown in the presence of VOCs emitted by
different fungal species have also been reported to show robust and early flowering
phenotype. Arabidopsis plant exposed to VOCs emitted by phylogenetically diverse
fungi such as T. viride, Pe. chrysogenum, Saccharomyces cerevisiae, and Pe. auran-
tiogriseum had increased number of flowers in Arabidopsis (Hung et al. 2014;
Sanchez-Loépez et al. 2016).

Plants often exploit various interconnecting mechanisms, including photoperiod,
vernalization, hormone biosynthesis, nutrient uptake, and aging pathways to shorten
the vegetative growth period and hasten flowering (Song et al. 2013). Enhancement
of flower production in PGPF-treated plant may be due to an increase in plant nutri-
ent (especially K+) uptake in combination with one or more of the abovementioned
mechanisms (Perner et al. 2007). Hormones, such as GAs, are involved in the regu-
lation of bud production and early flowering in plants (Zhang et al. 2014). Higher
levels of K+ in the plant are responsible for faster transport of GAs (Das et al. 2012).
Some studies have emphasized the importance of phosphorus on the impact on bud
formation and development and the number of flowers (Poulton et al. 2002).
Furthermore, CKs also play important roles in flowering by stimulating floret pri-
mordia differentiation and ovule development (Riefler et al. 2006; D’ Aloia et al.
2011; Zhang et al. 2014). In contrast, nitric oxide (NO) is known to participate in
plant flowering repression (Shi et al. 2012). Fungal VOC-promoted early flowering
involves suppression of NO action through the scavenging of NO molecules by CKs
(Sanchez-Lopez et al. 2016). It is likely that PGPF may utilize one or more of these
flowering mechanisms.

6.3.6 CropYields

Global yields of many crops have been somewhat static during the last two decades
(Gopalakrishnan et al. 2015). Many studies have proposed to use PGPF as an eco-
friendly and sustainable tool to enhance the yield of different crop plants (Table 6.2).
Commercial trials on several 7. harzianum T-22-treated hybrids and inbred lines have
revealed the yield increases in most genotypes (Harman et al. 2004). Application of T.
harzianum and T. viride was significantly effective in improving millable canes (~5-
30%), yield (~6-38%), and CCS (commercial cane sugar) t/ha (~30-34%) over the
control in plant cane (Srivastava et al. 2006). Similarly, application of 50% N fertilizer
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along with 50% Trichoderma-enriched biofertilizers has resulted in ~ 108% and
~203% yield increase in mustard and tomato, respectively, over the control (Haque
et al. 2012). In strawberry, lettuce, chickpea, and pea, crop yields were also increased
significantly following the application of Trichoderma spp. (Elad et al. 2006; Bal and
Altintas 2006; Hossain et al. 2013; Akhtar et al. 2015). Treatment with Pe. menono-
rum was useful in increasing the yields of cucumber plants (Babu et al. 2015).
Inoculation of banana plants with F oxysporum strains resulted in up to ~20 to ~36%
yield increase (Waweru et al. 2014). Root colonization by Pi. indica results in an
overall increase in grain yields in barley (Waller et al. 2005) and oil yields in Thymus
vulgaris and Foeniculum vulgare as compared with non-colonized plants (Dolatabadi
etal. 2011). Application of HBNR isolates to tomato plants in greenhouses resulted in
consistent and higher marketable and total yields, which were ~70-73% higher than
untreated plants (Muslim et al. 2003). These examples are a few of many that demon-
strate the yield benefit from plant-PGPF interactions (Table 6.2).

The exact reason for increased yields seems to be unclear yet, but in most cases,
it is probably due to greater supply of nutrients by PGPF to plants. Yedidia et al.
(2001) suggested that presence of PGPF in the rhizosphere increases root surface
area allowing the roots to explore larger volumes of soil; thus, more nutrients
become available to the plants especially under nutrient-stressed soil environments.
In vitro studies have shown that micronutrients and insoluble phosphates become
soluble and available by PGPF treatments, therefore useful to the roots interacting
with PGPF in the root zone (Waklin et al. 2007). PGPF also have the ability to
increase nitrogen-use efficiency in crops (Alberton et al. 2013) and to ameliorate
biotic and abiotic stresses (Shoresh et al. 2010). Some PGPF strains show abilities
to improve photosynthetic efficiency (Babu et al. 2015). All of these capabilities
singly or in combination contribute to improve crop yield.

6.3.7 Photosynthetic and Bioactive Compounds

Positive effects of PGPF are not always limited to the growth and yields; rather
many species of PGPF are associated with the biochemical changes in the colonized
plants. It is believed that some PGPF are quality enhancers and treatment with them
alters the photosynthetic product content in plants (Table 6.2). The application of 7.
harzianum and Ps. fluorescens led to increases in starch, total soluble and reducing
sugar, and phenol contents in leaves of sunflower (Helianthus annuus). There was
also a significant increase in seed lipid content and the proportion of linoleic acid
(Lamba et al. 2008). In a greenhouse study, plants inoculated with inocula of
Westerdykella aurantiaca FNBR-3 and T. longibrachiatum FNBR-6 significantly
improved total carotenoid and protein contents of the plant leaves in rice and pea
(Srivastava et al. 2012). Application of isolates of As. niger significantly caused
higher accumulation of total phenolic, salicylic acid, and chlorophyll contents of
plant, as well as lycopene, ascorbic acid (vitamin C), and Brix index of tomato fruit
compared to untreated control (Anwer and Khan 2013). PGPF inoculation also
improve the levels of different photosynthetic compounds under stress and help the
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plants ameliorate oxidative stress resulting from high stress. Under mild drought
stress, endophyte fungus Neotyphodium lolii enhanced the accumulation of soluble
sugars in Lolium perenne cv SR4000 plants to improve their osmotic ability (Ren
et al. 2006). When stress have been intensified, the improvement by endophyte no
longer sustained, but other photosynthetic products such as starch were accumu-
lated in the endophyte-infected plants to survive through the undesirable conditions.
Similarly, application of 7. harzianum T6 increased the soluble sugar and protein
contents in the wheat seedlings grown under salt stress, compared to the control
(Zhang et al. 2016). Sharma et al. (2016) investigated the effect of Pi. indica inocu-
lation on salinity stress tolerance of Aloe vera plant and observed significantly
higher phenol, flavonoid, flavonol, and aloin contents as well as improved radical
scavenging activity in the inoculated plantlets as compared to non-inoculated con-
trols at all salinity concentrations. The increased accumulation of these compounds
in plants usually indicates a highly protective mechanism against oxidative damage
caused by high stress in the plant environment (Bartels and Sunkar 2005).
Accordingly, PGPF-inoculated plants are likely to recover from undesirable condi-
tions more rapidly than non-inoculated plants.

Many of the PGPF have developed the ability to enhance the production of bioac-
tive substances originated from the host plants. In addition to their role in conferring
fitness benefits to host plants, many of these secondary metabolites have interesting
applications in industry. For example, Coleus forskohlii is a perennial medicinal
shrub of the mint family (Lamiaceae) and has been used in traditional medicine for
treating a broad range of human health disorders (Lukhoba et al. 2006). The main
active compound of C. forskohlii is forskolin, which is known for its broader phar-
macological activities (Li and Wang 2006; Wagh et al. 2012). The forskolin concen-
tration in roots of C. forskohlii was enhanced by dual inoculation with Glomus
mosseae and T. viride (Boby and Bagyaraj 2003). Others report that the effect of
bioinoculation on the production of secondary metabolites was negative. For exam-
ple, Das et al. (2012) found the reduced contents of forskolin in Pi. indica-colonized
plants as compared with the non-colonized plants. Singh et al. (2012) reported that
it is not the forskolin content of the root, rather the forskolin yield which is increased
significantly by treatment with bioinoculants. Another essential oil, p-cymene, is
frequently utilized in pharmaceuticals or in fine chemical industries for syntheses of
fragrances, p-cresol, flavorings, herbicides, non-nitrated musks, etc. (Martin-Luengo
et al. 2008). The level of p-cymene increased in the aerial parts of the Pi. indica-
colonized C. forskohlii plants as compared with the non-colonized plants (Das et al.
2012). Likewise, inoculation of Sebacina vermifera and Pi. indica significantly
increased the level of thymol in thyme, anethole in fennel, and podophyllotoxin and
6-methoxypodophyllotoxin in Linum album as compared to non-inoculated control
plants (Baldi et al. 2010; Dolatabadi et al. 2011). Similar cases of enrichment of
bioactive compounds such as artemisinin in Artemisia annua L. shoots (Sharma and
Agrawal 2013), spilanthol in S. calva (Rai et al. 2004), saponin from Chlorophytum
sp. (Gosal et al. 2010), and asiaticoside from Centella asiatica (Satheesan et al.
2012) were also reported in earlier studies with P. indica treatment. As biotic elici-
tors, PGPF or constituents of their cells can equally be used to stimulate the
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secondary metabolite production in plant cells. As reported by Ming et al. (2013),
both the mycelial extract and the polysaccharide fraction produced by 7. atroviride
D16 could stimulate the biosynthesis of tanshinones in hairy roots of Salvia miltior-
rhiza. The data presented here show that PGPF can increase industrial advantages of
the host plants by producing scarce and valuable bioactive compounds for human
use. Moreover, understanding the effects of PGPF on plant secondary metabolite
production may help produce targeted drugs through bioengineering.

6.3.8 Plant Signaling Pathways Leading to Enhanced Growth

The interaction between host plant and PGPF involves the exchange of signal mol-
ecules by the two partners. This initial exchange leads to recognition of the appro-
priate partner and thus plays an integral role in establishing successful association.
Plant responses to microbial association are translated into massive changes in bio-
chemical reactions, metabolic adjustments, and physiological state. With current
advances in molecular biology, many components of the signal transduction path-
ways in beneficial plant-microbe interaction have now been characterized. It has
now become obvious that plant signaling pathways leading to enhanced growth by
PGPF rely on endogenous regulators, such as auxin, ET, and CKs. Other plant hor-
mones such as GAs and ABA represent additional classes of signaling molecules
that influence beneficial plant-PGPF interactions.

As noted earlier, plant-PGPF interactions can employ direct or indirect influ-
ences on belowground and aboveground plant structures. The frequently reported
effects are enhanced biomass production, flowering, root hair development, and
increased yield (Bjorkman et al. 1998; Harman et al. 2004; Contreras-Cornejo et al.
2009). Several interesting studies have pointed to the role of auxin as plant signaling
hormones in plant responses to PGPF and especially describing their participation
in controlling shoot and root development. Wild-type Arabidopsis seedlings inocu-
lated with 7. virens showed augmented biomass production and lateral root develop-
ment (Contreras-Cornejo et al. 2009). The inoculated plants exhibited the expression
of auxin-regulated genes. As it was expected, mutations in genes involved in auxin
transport or signaling, AUX1, BIG, EIR1, and AXRI, reduced the plant growth-pro-
moting and root developmental effects of 7. virens inoculation in Arabidopsis.
These results indicate that plant growth promotion by 7. virens operates through the
classical auxin response pathway (Contreras-Cornejo et al. 2009). Similarly, Pi.
indica-induced expression of auxin-regulated genes was reported in barley (Schifer
et al. 2009) and in Chinese cabbage (Lee et al. 2011), and their induction was instru-
mental for the strong growth-promoting effect by the fungus. It is assumed that
microbial auxin may have a role in altering auxin biosynthesis or signaling in the
host (Sukumer et al. 2013). Previously, Sirrenberg et al. (2007) have noted that the
phenotype obtained from interactions of Arabidopsis with Pi. indica is mimicked by
an external application of IAA, at a concentration lower than produced by the fun-
gus, suggesting a role for exogenous auxin. Similarly, Contreras-Cornejo et al.
(2009) showed that treatment with IAA and indole-3-acetaldehyde was found to
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rescue the root hair-defective phenotype of rid6 mutant. This result may imply that
the microbial auxin may take part in suppressing the root hair formation defects of
rhd6. Therefore, auxin can act as a reciprocal signaling molecule in plant-microbe
interaction.

Ethylene, the gaseous phytohormone, is important for plant growth and develop-
ment as well as plant response to environmental signals (Vandenbussche et al.
2012). The growth-promoting endophytic fungus Sebacina vermifera significantly
increases the growth of Nicotiana attenuata. When the N. attenuata plant was trans-
formed to silence ET production, growth promotion effect by the fungus was not
observed (Barazani et al. 2005). DNA microarray-based gene expression analysis
revealed a differential induction of genes related to ET synthesis and signaling in
barley roots colonized by endophytic fungus Pi. indica (Schifer et al. 2009).
Mutants etrl, ein2, and ein3/eill impaired in ET signaling showed compromised or
inhibited growth and seed production responses by this fungus compared with the
wild type. These results are the indication of involvement of ET signaling in the
beneficial interaction between the two symbionts (Camehl et al. 2010). Impaired ET
signaling resulted in reduced root colonization by the fungus, while Arabidopsis
mutants exhibiting constitutive ET signaling and synthesis or ET-related defense
were hypersusceptible to Pi. indica (Khatabi et al. 2012). This suggests that ET
signaling influences plant growth by affecting fungal colonization on the roots.

Although several VOCs from PGPF are known to affect plant growth, the signal-
ing pathways mediating VOC sensing are not fully understood. The major natural
antifungal VOC isolated from Trichoderma was 6-pentyl-2H-pyran-2-one (6-PP)
(Lee et al. 2016) which induces A. thaliana root morphogenesis via auxin transport
and signaling and the ET-response modulator EIN2 (Garnica-Vergara et al. 2016).
Ryu et al. (2003) reported that CK signaling plays a role in growth promotion with
exposure to Bacillus subtilis GBO3 VOCs. CKs are also essential for Pi. indica-
induced growth promotion in Arabidopsis (Vadassery et al. 2008). Moreover, in
response to Pi. indica colonization, the ABA pathway was proposed to enhance
plant growth via cellular [Ca*"] elevations, phosphoinositide, and particular protein
kinases (Vadassery et al. 2009; Camehl et al. 2011). Additional phytohormones syn-
thesized or manipulated by the growth-promoting fungi include GAs and brassino-
steroids (Schifer et al. 2009). In summary, almost the whole phytohormone
signaling networks appear to be involved in generating compatible interactions
between the fungus and host, which lead to growth promotion and finally to greater
biomass.

6.3.9 Plant Genetic Variability Affecting Induced Plant Growth

The expected beneficial effects of microbial application are frequently influenced
by treated plant genotype. While plant growth promotion by PGPF has been well
documented, this trait rarely occurs across all plant-PGPF combinations. It is
assumed that a preferential interaction exists between strains of PGPF and a
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particular host. Similarly, plant-dependent differences in response to PGPF inocula-
tion may also occur at the cultivar level. Both fungi and plant cultivars have their
own sets of characteristics that ultimately define the intimate interaction between
them and the beneficial outcomes resulting from the developed interaction. There
are cultivar genotypes for which the use of particular PGPF strain may be either
endorsed or contraindicated. The use of a responsive cultivar may help maximize
the efficacy of PGPF, and new inducer strains should be explored for the less respon-
sive cultivars. Despite the obvious significance for agriculture, there are still a few
studies on how the plant response to PGPF is influenced by plant genotypes in terms
of growth promotion.

Earlier, Shivanna et al. (1994) tested seven zoysiagrass sterile fungal isolates and
a wheat rhizosphere isolate (K-17) on two wheat varieties in field conditions. The
growth of one variety was enhanced by most of the isolates, except K-17, while only
a few isolates increased the growth of the other variety. There are at least four PGPF
isolates which increased yields of both varieties. The authors concluded that the
effectiveness of PGPF isolates in terms of plant growth promotion depends on the
crop variety besides their inherent growth promotion abilities. In another study,
Shivanna et al. (2005) examined the ability of a few of Phoma sp. isolates and one
non-sporulating fungal isolate to promote plant growth of four cucumber cultivars:
Aodai kyuri, Jibai, Ochiai fushinari, and Shogoin fushinari. All isolates enhanced
plant length in cucumber cv. Shogoin fushinari, while nine isolates except the sterile
fungal isolate GU21-1 improved the plant length in cv. Aodai kyuri. On the con-
trary, stimulated plant length was not observed in cucumber cv. Jibai and Ochiai
fushinari, when the plants were treated with one (GS6-4) and five fungal isolates
(GS6-1, GS7-4, GS8-6, GS10-2, and GU21-2), respectively. These results also sug-
gest that the tested PGPF isolates caused cultivar-specific plant length promotion in
cucumber. Harman (2006) reported that maize inbreeds treated with T-22 strain of
T. harzianum showed three different types of growth responses such as strongly
positive, little effect, and negative. Thus, there clearly are strong genetic compo-
nents to the response of maize to T-22. Further, analysis of T-22-induced growth
responses of hybrids derived from parent with dissimilar growth responses suggests
that the T-22 responses in maize are largely conditioned by dominant genes (Harman
2006). In a growth chamber study, Tucci et al. (2011) demonstrated that substantial
differences in the growth response to the symbiotic interaction with two selected
strains of Trichoderma spp. occurred when different tomato varieties were tested.
Consequently, the plant response to 7. harzianum T-22 or T. atroviride P1 is affected
by plant genetic variability and thus is under genetic control in tomato. Since plant
response to PGPF is a heritable trait (Harman 2006), its extrapolation to crop plants
by breeding would be significant for plant improvement. The possible mechanisms
that underlie plant genetic control of the interaction may include the genotype abil-
ity to support and sustain root colonization by the PGPF, different sensitivities to the
effectors produced by the fungus, variability in the perception and signal transduc-
tion of any of the hormones whose concentrations are controlled by it, and so on
(Tucci et al. 2011).
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6.4 Induction of Systemic Resistance by PGPF

Additional interests in the biological control of soil-borne diseases of plants led to
the useful discovery of a specialized type of induced resistance as resulting effects
of the colonization of plant roots by certain PGPR, referred to as induced systemic
resistance or ISR (van Loon et al. 1998). ISR is known to reduce the incidence and/
or severity of various fungal, bacterial, viral, nematode, and oomycete diseases on a
diversity of plants (Walters et al. 2013). In contrast to constitutive defense, ISR is
considered cost saving. ISR reduces physiological costs of the plants by better
matching between resource investment into defense and potential threats (Gémez
et al. 2007). Therefore, ISR could offer the most efficient means of defense against
invading pathogens.

Research in the last decade in plant-fungal biocontrol agent interactions has
made it clear that elicitation of ISR is a widespread phenomenon. It is not limited
only for PGPR but also for a variety of other microorganisms including PGPF. PGPF
of different taxa have been found as potential inducers of systemic resistance against
pathogens. Among them, members of Trichoderma (Shoresh et al. 2005), Penicillium
(Hossain et al. 2007; Hossain et al. 2008a), nonpathogenic Fusarium (Kojima et al.
2013), Piriformospora (Stein et al. 2008), Pythium (Hase et al. 2008), Sebacinales
(Waller et al. 2008), Phoma (Sultana et al. 2009), and sterile fungi (Sultana et al.
2008) are well studied for their roles as elicitors of ISR (Table 6.3). The classical
biocontrol agents Trichoderma spp. have frequently been shown to suppress the
severity of diseases, particularly those caused by soil-borne plant pathogens through
mycoparasitism and antibiosis (John et al. 2010; Akhter et al. 2015). However, T.
virens mutants deficient in mycoparasitic ability and/or inability to produce antibi-
otics had no effect on the biological activity of these strains. Instead, there seemed
to have a very strong correlation between the abilities of these strains to trigger
terpenoid phytoalexin defense in cotton seedlings and control of R. solani (Howell
et al. 2000). These examples clearly demonstrate the importance of ISR by
PGPE. The ability of Trichoderma spp. to trigger ISR has been shown in
agriculturally important crops such as rice, wheat, bean, maize, cucumber, lettuce,
cotton, tobacco, and tomato and Rhododendron against fungi to oomycetes to bac-
teria and even virus (Ahmed et al. 2000; Koike et al. 2001; Yedidia et al. 2001;
Howell 2003; Harman et al. 2004; Shoresh et al. 2005; Hoitink et al. 2006; Saksirirat
et al. 2009; Elsharkawy et al. 2014; Vitti et al. 2016). Several Penicillium spp. have
also been extensively tested for their ability to elicit ISR in plants and were very
much effective against fungi (Hossain et al. 2014), bacteria (Hossain and Sultana
2015), and viruses (Elsharkawya et al. 2012). Phoma sp. and sterile fungi have simi-
lar capabilities (Hossain et al. 2008b; Sultana et al. 2008; Sultana et al. 2009). ISR
has been reported to be a mechanism of action for some nonpathogenic strains of F.
oxysporum. ISR by Fusarium isolates have been reported against root-knot nema-
todes (Dababat and Sikora 2007) and Radopholus similis in banana (Athman et al.
2006); Pythium ultimum infection in cucumber (Benhamou et al. 2002); Verticillium
wilt in eggplant (Ishimoto et al. 2004); Fusarium wilt in watermelon (Larkin and
Fravel 1999), sweet potato (Ogawa and Komada 1986), and tomato (Patil et al.
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2014); Phytophthora infestans in potato (Quintanilla 2002); pea root rot pathogen
(Peters and Grau 2002); and Ps. syringae in Arabidopsis (Kojima et al. 2013). The
hypovirulent Rhizoctonia isolates protect bean and tomato (Cardinale et al. 2006),
Arabidopsis (Sharon et al. 2011), and kidney bean (Tohid and Taheri 2015) against
important pathogens through mechanisms associated with ISR. Evidence also sug-
gests that Pi. indica induces systemic resistance in rice against bakanae disease
caused by F. proliferatum (Hajipoor et al. 2015), leaf blast caused by Magnaporthe
oryzae (Mousavi et al. 2014), and sheath blight caused by R. solani (Nassimi and
Taheri 2017). The fungus reduces fusarium head blight severity in wheat (Rabiey
and Shaw 2016) and powdery mildew disease caused by Blumeria graminis f. sp.
hordei in barley (Waller et al. 2005; Harrach et al. 2013). These results show that
PGPF strains can effectively enhance disease resistance of plants.

Colonization of plant roots by PGPF seems an essential step for eliciting
ISR. However, studies revealed that culture filtrates of certain Penicillium,
Fusarium, Phoma, and sterile fungi afforded better protection than living inocula,
suggesting that not only the effect of root colonization but also the triggering of
host defense mechanisms by certain chemical factors produced by fungi is respon-
sible for the induction of resistance in plants against pathogens (Hossain et al.
2008a; Sultana et al. 2008; Kojima et al. 2013). Various microbial metabolic mol-
ecules such as protein with enzymatic activity, cell wall lipid, chitin oligomers, and
glycopeptides have been described with elicitor activity. Hyakumachi (1997)
revealed that the lipid fraction of mycelial cell walls of non-colonizing PGPF and
the cell wall lipid fractions as well as polysaccharides of root colonizing PGPF
were effective in eliciting a resistance response. Koike et al. (2001) reported that
both the MW 12,000 D fraction and the lipid fraction of culture filtrate of Pe. sim-
plicissimum GP17-2 induce resistance, lignification at the site of pathogen infec-
tion, and generation of reactive oxygen species. The peptaibols (peptide antibiotics)
and the small protein Sm1 produced by 7. virens have been shown to be responsible
for the systemic activation of the defense responses against Colletotrichum gramini-
cola and Cochliobolus heterostrophus in maize leaves (Djonovi¢ et al. 2007;
Viterbo et al. 2007; Gaderer et al. 2015). Similarly, its homologue Epll from T.
atroviride induces plant resistance responses to a lesser extent against Cochliobolus
heterostrophus (Gaderer et al. 2015). Recent studies have also revealed that VOCs
emitted by some PGPF strains can effectively enhance disease resistance. A terpe-
noid-like volatile B-caryophyllene emitted by Talaromyces wortmannii FS2 signifi-
cantly enhanced the resistance to Colletotrichum higginsianum (Yamagiwa et al.
2011). Two VOC blends extracted from Ampelomyces sp. and Cladosporium sp.
containing m-cresol and methyl benzoate (MeBA) as major active volatile com-
pounds, respectively, were found to elicit ISR in Arabidopsis plants against Ps. s.
pv. tomato DC3000 (Naznin et al. 2014). These observations imply the use of
VOCs emitted from beneficial fungi as a novel strategy for biocontrol. However,
they are difficult to apply in the field because of their high evaporative nature, and
additionally, their efficacy seems to be low compared with other chemical elicitors
(Naznin et al. 2014).
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6.4.1 Defense Responses During PGPF-Mediated ISR

Plants defend themselves against phytopathogenic attacks by activating a wide spec-
trum of defense-related genes or compounds that enhance both cellular protection
and disease resistance. Often, the induced effects of PGPF on the plant defenses are
not limited to the root, but they are also exhibited in aboveground plant tissues
(Martinez-Medina et al. 2010), providing the whole plant more resistance to a wide
range of plant pathogens. Various transcriptomic studies have provided evidences
that ISR may result in the direct activation of cellular defense responses in systemic
tissue after local stimuli and/or of the priming, which involves activation of systemic
responses, but only when the pathogen reaches these sites (Aranega-Bou et al. 2014).
Some of PGPF-mediated ISR result from direct activation of defense genes than
priming, while others are most frequently associated with priming for boosted defense
rather than direct activation. There are also PGPF-mediated ISR which are partly
associated with the direct activation of defense-related genes and partly associated
with priming (Hossain et al. 2008a). These differential mechanisms of ISR by differ-
ent PGPF could possibly be due to strain-specific differences in elicitor substances.

6.4.1.1 Direct Activation of Defense Responses

Direct activation of various defense responses and a significant reduction in patho-
gen growth are observed in different PGPF-mediated ISR. In a growth chamber
study, examination of local and systemic gene expression revealed that Pe. simpli-
cissimum GP17-1-mediated ISR is accompanied by direct activation of PR-2 and
PR-5 genes in leaves and roots of Arabidopsis plants, while increased expression of
PDF1.2 was seen in the leaves of treated plants (Hossain et al. 2007). In another
study, Pe. chrysogenum PenC_JSB4 and T. harzianum TriH_JSB27 treatments
directly activated phenylalanine ammonia lyase (PAL) activity in tomato plant
(Jogaiah et al. 2013). Similar results have been reported with increase in PAL activ-
ity in sunflower plants treated with 7. harzianum (Lamba et al. 2008). Mathys et al.
(2012) reported that addition of 7 hamatum T382 to the roots of the plant triggers a
clear and pronounced induction of PR-1, PR-2, and PR-5 on the first 3 days of post-
T382 inoculation, while the expression of the PDF1.2a was not affected in the
leaves on the second day after the treatment. Moreover, comparing plants treated
with T. hamatum T382 with mock-treated controls, they identified 2075 genes that
are differentially expressed during T382-mediated ISR. Several other studies also
suggested the direct activation of defense-related genes during Trichoderma-
induced systemic resistance (Alfano et al. 2007; Salas-Marina et al. 2011; Moran-
Diez et al. 2012). Root treatment with nonpathogenic F. oxysporum modulates the
expression of systemic acquired resistance (SAR) marker genes in tomato (Duijf
et al. 1998). Similarly, the onset of resistance induced by F. equiseti GF19-1 in the
leaves of Arabidopsis plant was associated with a significant induction of PR-1, PR-
2, and PR-5 genes (Kojima et al. 2013). Not only the root colonization by PGPF but
also the culture filtrates produced by them modulate the direct activation of defense
genes, leading to enhanced resistance to invading pathogens (Hossain et al. 2008a;
Sultana et al. 2009; Kojima et al. 2013; Shimizu et al. 2013). Enhanced expression
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of PR-1, PR-2, PR-5, ChitB, and Hel genes was observed in Arabidopsis plants
treated with culture filtrate of Phoma sp. GS8-1 (Hossain et al. 2008b). Two VOC
blends extracted from Ampelomyces sp. and Cladosporium sp. containing m-cresol
and MeBA induced PR-1 and PDF 1.2 genes in leaves of A. thaliana (Naznin et al.
2014). The correlation between ISR and presence of constitutive induction of
defense genes postulates the assumption that constitutively activated defense
responses are essential mechanisms in the PGPF-mediated ISR response of plants.

6.4.1.2 Priming (Sensitization) of Defense Responses During PGPF-
Mediated ISR

There are PGPF, which are believed not to significantly alter gene expression upon
treatment or show minimal induction of defense genes. Rather, they acquire a sec-
ond line of defense, in which they prime or sensitize plants to express resistance
response more rapidly and/or more robustly upon pathogen attack. Upon pathogen
infection, there is an activation of cellular defense responses in attacked cells of
both ISR-expressing and non-expressing plants. However, in case of ISR-
expressing, cellular defense responses are induced more rapidly and stronger than
in a non-induced plant. The primed state develops from the enhanced perception
and/or amplification of defense signals (Aranega-Bou et al. 2014). Thus, ISR
orchestrates an enhanced ability of the plant for the fast and effective activation of
defense responses that are triggered not until challenged pathogen attack (Conrath
2009). This process of priming has been demonstrated in various plant species
protected by ISR triggered by PGPF. Hossain et al. (2008a) analyzed the expression
of a set of defense-related genes, locally, in roots as well as, systemically, in the
leaves of Penicillium spp. GP16-1-colonized plants. The leaves and roots of the
GP16-2-treated plants did not show enhanced expression of any of the genes stud-
ied over untreated plants. However, upon infection with P. syringae pv. syringae,
activation of the ChitB gene was greatly enhanced in GP16-2-treated plants. Despite
no induction of the Vsp gene was observed in Pe. simplicissium GP17-2-treated
plants before pathogen inoculation, transcript levels accumulated to greater levels
in these plants at 4 and 6 days post-infection by P. 5. pv. syringae (Hossain et al.
2007). Likewise, although systemic induction of three defense genes (PI 11, PS, and
MC coding for the proteinase inhibitor II, prosystemin, and multicystatin) was rela-
tively weak in plant colonized by T. harzianum, the expression of these genes has
been boosted in the induced plants, upon Botrytis cinerea infection (Martinez-
Medina et al. 2013). Similar activation of a priming state in plants by Trichoderma
has been observed previously in Arabidopsis, tomato, and grapevine plants (Segarra
et al. 2009; Tucci et al. 2011; Perazzolli et al. 2012; Alizadeh et al. 2013). These
solid evidences substantiate that priming is a major defense mechanism in PGPF-
mediated ISR. PGPR and SAR activators have also been demonstrated to enhance
the plant’s defense capacity by priming for potentiated expression of defense genes
(Verhagen et al. 2004; Tjamos et al. 2005; Conrath et al. 2006). Ryu et al. (2004)
demonstrated that some PGPR can even induce priming by the release of volatiles.
This indicates that priming is, indeed, a very common mechanism underlying
plant’s various induced responses (Bruce et al. 2007). From an economic context,
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priming appears to offer an overall advantage to plant over the direct induction of
the plant defense responses. Direct induction of defense mechanisms is known to
seriously affect the growth and seed set, while priming had only marginal effects
(van Hulten et al. 2006). Priming conditions plants to trigger appropriate set of
defenses without misuse of resources in every situation and reduces trade-offs
between defenses against various pathogens. Biochemical and histological changes
characteristic of ISR-expressing plants become apparent only in plant organs where
an effective resistance is essential.

6.4.2 Plant Signaling Pathways Leading to ISR

SAR and ISR are two classes of inducible resistance where plant defense systems
are sensitized by prior infection or treatment with a stimulus that triggers putative
resistance against succeeding challenge inoculation by a pathogen (Choudhary
et al. 2007). These different forms of resistance are usually associated with the gen-
eration of defense-eliciting signals that stimulate a series of downstream events. The
key downstream elements of defense signal transduction that warrants particular
importance are SA, jasmonic acid (JA), and ET. SA signaling through NPR1 is
necessary to trigger SAR (Withers and Dong 2016). Different from SAR, ISR elic-
ited from Ps. fluorescens colonization is independent of SA accumulation but
requires responsiveness to JA and ET. Besides SAR, NPR1 is also needed for ISR
triggered by rhizobacteria (Pieterse et al. 1996, 2009). Some studies have indicated
that similar signaling pathways of PGPR-mediated ISR are likely to have required
in PGPF as well. ISR triggered by Trichoderma spp. involves responsiveness to JA
and ET pathways (Shoresh et al. 2005; Segarra et al. 2009; Perazzolli et al. 2011;
Tucci et al. 2011). Similarly, ET- and JA-signaling pathways with mediation of
NPRI1 are key players in the regulation of ISR elicited by Penicillium sp. GP16-2
(Hossain et al. 2008a). However, others have disputed this generalization (Hossain
et al. 2007; Korolev et al. 2008; Niu et al. 2011), an indication that is established by
the results of many studies. As examples, ISR mediated by Pe. simplicissimum
GP17-2 against P. syringae pv. tomato only partially requires the SA pathway, while
it shows complete independency on the JA and ET pathways (Hossain et al. 2007).
The same PGPF elicits resistance to cucumber mosaic virus (CMV) in Arabidopsis
independent of SA, JA, and ET pathways (Elsharkawya et al. 2012). Although ISR
elicited by Penicillium spp. GP16-2 against P. syringae pv. tomato follows JA- and
ET-dependent pathways, its cell-free filtrate mediates resistance independent of SA,
JA, and ET pathways (Hossain et al. 2008a). Similarly, differences from the reported
pathways were noted with mycelial extract of Pe. chrysogenum and culture filtrate
of Phoma sp. (Thuerig et al. 2006; Hossain et al. 2008b; Sultana et al. 2008).

It has been proven that other forms of induced resistance exist. A study by
Korolev et al. (2008) using multiple mutant lines of Arabidopsis has shown that the
induction of resistance by 7. harzianum Rifai T39 against B. cinerea requires
responsiveness to JA, ET, and ABA signalings. Stein et al. (2008) showed that
induction of systemic resistance in Arabidopsis by Pi. indica to powdery mildew
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(Golovinomyces orontii) requires JA signaling and function of NPR1. Mathys et al.
(2012) reported a role of the SA pathway in 7. hamatum T-382-induced ISR against
B. cinerea in Arabidopsis. Similarly, the phenotypic analysis of disease develop-
ment in the JA (defl)- and SA (NahG)-impaired mutants demonstrated that 7
harzianum-induced systemic resistance against B. cinerea requires not only the JA
but also the SA signaling pathways (Martinez-Medina et al. 2013). Investigation of
ISR in various signaling mutants and transgenic plants showed that the induced
protective effect conferred by F. equiseti GF19-1 against P. s. pv. fomato requires
responsiveness to an SA-dependent pathway (Kojima et al. 2013). The examination
of plant hormones revealed that treating tomato plants with 7. harzianum T-22
before or simultaneously to CMV infection leads to a systemic resistance that
requires JA/ET and SA signaling pathways. Conversely, systemic resistance occurs
in an ABA-dependent manner when T-22 treatment was administered after the
CMV infection (Vitti et al. 2016). Therefore, the role of plant signaling pathways in
the regulation of ISR is complex. The nature and composition of signaling pathways
and the regulated defenses during PGPF-mediated ISR distinctively depend on the
tripartite combination plant-PGPF-pathogen, and the overlap between SAR and ISR
is very common.

6.4.3 Plant Genetic Variability Affecting Induced Systemic
Resistance

In nature, plants within a population generally vary in different traits, which include
yield potential, large seed, disease resistance, etc. Natural variation in plants is pre-
requisite for biological effects of genetic diversity and for the adaptive potential of
a species to environments that vary in space and time (Shindo et al. 2007; Hossain
and Sultana 2015). From the very beginning of modern agriculture, breeders make
use of the trait diversities in plant population to develop new and improved cultivars
with desirable characteristics. These improved cultivars have been crucial in pro-
ducing surplus food for growing populations. ISR has been emerging as an impor-
tant mechanism, which allows conditioning of plant defense system by rhizosphere
microorganisms to promote desirable traits in plant. Exploitation of this mechanism
is extremely valuable in reducing yield losses to diseases in susceptible crops in a
cost-efficient way. So far, various application methods have been attempted to inte-
grate ISR into conventional agriculture and in a few cases with improved efficacy
(Hossain and Sultana 2015). Existing data support the heritability in the ISR and a
link between basal and induced resistance (Ton et al. 2001a). Therefore, breeding
efforts to add ISR to commercial cultivars could be a feasible option that, overall,
would have much significant impact on resistance breeding.

The variation in morphological and physiological traits among plant genotypes
is known to affect relative benefits and efficacy of induced resistance (Tucci et al.
2011). Walters et al. (2011) have examined the effect of host genotype on the expres-
sion of chemical elicitor-induced resistance in barley to foliar pathogens and noticed
that manifestation of induced resistance differed widely across a range of spring
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barley varieties. This implies that genetically different genotypes vary in the extent
to which induced resistance is expressed. Until now, only a few studies have exam-
ined the genotypic effects of plants on PGPF-mediated ISR. In tomato, genetic vari-
ability among cultivated and wild lines influenced the consequence of the interaction
with strains of 7. harzianum and T. atroviride, with ISR to B. cinerea being observed
in some, but not all, tomato lines examined (Tucci et al. 2011). In table and wine
grapes, treatment with 7. harzianum T39 reduced downy mildew symptoms, but the
degree of efficiency varied greatly among grapevine cultivars (Banani et al. 2013).
In Arabidopsis, Hossain and Sultana (2015) investigated the variation in basal as
well as Pe. simplicissimum GP17-2-mediated resistance to P. s. pv. fomato among a
worldwide collection of 75 Arabidopsis accessions. A wide variation was observed
in basal as well as induced resistance among the accessions infected with the bacte-
rium. Only 49 accessions manifested GP17-2-mediated ISR to the pathogens, while
26 accessions were non-responsive to GP17-2 treatment. This indicates that the
observed GP17-2-mediated ISR is ecotype specific in Arabidopsis. Interestingly,
accessions non-inducible to GP17-2 treatment appeared to be marked with higher
basal resistance to infection by P. syringae pv. tomato (Hossain and Sultana 2015).
Hence, GP17-2-ISR in Arabidopsis does not require components of the basal resis-
tance pathway. Future study with these parental lines could be undertaken to map
and introgress major trait loci responsible for PGPF-mediated ISR in plant.

6.5 Conclusion and Future Perspectives

Understanding the induction of plant responses by PGPF is essential for developing
new strategies for managing plant growth and diseases. The enormous benefits of
their exploitation are related to their use as innovative microbial sources for plant
growth promotion and induced resistance to a diverse range of pathogens. Some of
these fungi are already being used successfully in a number of countries, and this
practice is expected to grow. However, practical use of PGPF is often hindered by
inconsistency and relatively poor plant growth and disease control compared with
their chemical alternatives, and as such, their effects are greatly influenced by geno-
type, environment, and other factors. Eventually, for PGPF to gain widespread use
in farmer fields, a number of issues should be addressed. It is crucial to develop
effective and practical techniques for mass culture, storage, shipping, formulation,
and application of these fungi. More importantly, effort is needed to convince the
growers that PGPF can provide a useful addition to their existing crop management
programs.

Recent advances in molecular tools continue to give more insight into the cellu-
lar process and signaling mechanisms, related to growth and defense, resulting from
plant-PGPF interactions. The current demand for high-performing PGPF could be
achieved by applying innovative biotechnology to generate genetically modified
strains with improved characteristics. Likewise, PGPF genes can be expressed func-
tionally in plants to confer beneficial properties. Concern exists about the nontarget
activities of the genetically modified plant or microbes, which needs to be carefully
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and thoroughly assessed in non-field studies. Moreover, market failure of the devel-
oped products illustrates one aspect of the problem of externalities. Active and justi-
fied participation of private industry in product research and development may help
overcome the problem.
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