Diyah Candra Anita

ACID BASE BALANCE

Introduction

- Acid Base Balance is a physiological and biochemical mechanism associated to body/blood pH.
 - pH is a Hydrogen ion concentration.
 - pH = log [H⁺]
 - Different compartment of human body has specific pH.
 - pH has role in Enzyme activity.

Why blood pH is Altered?

 Addition of various acids or alkalies by metabolic activities alters body/blood pH.

Sources and Types of Acids and Alkalies Added During Metabolic Life Processes

- Acids are H⁺ donors.
- Bases are H⁺ acceptors, or give up OH⁻ in solution
- Acids and Bases can be strong or weak:
 - A strong acid or base is one that dissociates completely in a solution
 - HCl, NaOH, and H₂SO₄
 - A weak acid or base is one that dissociates partially in a solution
 - H_2CO_3 , $C_3H_6O_3$, and CH_2O , Lactate.

Acid Production

Types of acids in the body

- Volatile acid
 - Can leave solution and enter the atmosphere (e.g. carbonic acid)
- Fixed acids
 - Acids that do not leave solution (e.g. sulfuric and phosphoric acids)
- Organic acids
 - Participants in or by-products of aerobic metabolism

Acid

Acidic Substances of body:

- Carbonic acid(H2CO3)
- Phosphoric acid(H3PO4)
- Sulphuric acid (H2SO4)

• Organic Acids:

• Lactate, Acetoactate, Pyruvate

Alkaline Substances of body:

- Citrate
- Bicarbonates.

What is Acid Base Balance?

- Homeostatic Mechanisms That Regulate Blood/Body pH
- Acid Base balance is a homeostatic mechanism → Carried out to regulate the altered pH of blood and other body compartments to its normal constant range.
- Maintenance of Acid Base balance → Is a prime requisite to maintain normal healthy and active life.
- Acid-Base Balance
 - It is the regulation of **HYDROGEN** ions.
 - *The <u>more</u> Hydrogen ions, the more acidic the solution and the <u>LOWER</u> the <i>pH*
 - The acidity or alkalinity of a solution is measured as pH

Acid Base Balance Regulates pH

- pH of blood and other body compartments are precisely regulated.
- pH is always tried to be maintained to its normal constant range.
- Acid Base Balance maintains the blood pH at normal constant narrow range of 7.35-7.45.
- pH of the medium directly affects the enzyme activities
 - Optimum pH is an essential requisite for enzyme activities and normal metabolism
- It is prerequisite for regulating blood/body pH:
 - To maintain normal/optimal Enzyme activities
 - Normal metabolism
 - Normal Coordination
 - Normal Health

Factors Regulating Acid Base Balance

- First Line of Defense: Blood Buffer System
- Second Line of Defense: Respiratory Mechanism
- Third Line of Defense: Renal Mechanism

- **Chemical Buffers** : React very rapidly (less than a second)
- **Respiratory Regulation** : Reacts rapidly (seconds to minutes)
- Renal Regulation : Reacts slowly (minutes to hours)

Role of Blood Buffer System

- First line of defense in mechanism of Acid Base Balance.
- Acids (H⁺) added are neutralized by the salt part of buffer.

Extracellular Buffers:

- Bicarbonate Buffer
 - NaHCO3/H2CO3 (20:1 at 7.4 pH)
- Phosphate Buffer
 - Na2HPO4/NaH2PO4 (4:1 at 7.4 pH)
- Protein Buffer
 - Na-Protein/H-Protein

Intracellular Buffers:

- Bicarbonate Buffer
 - KHC03/H2C03
- Phosphate Buffer
 - K2HPO4/KH2PO4
- Protein Buffer
 - K-Hb/H-Protein

Mechanism Action of Buffer Systems

- Buffers mixture of weak acids and its salts
- **Resist change in pH of blood** when small amount of acids or alkalis added to the medium.
- Buffers act quickly but not permanently

Bicarbonate Buffer System Respiratory Buffer System

- Acid Base balance is primarily concerned with Bicarbonate Buffer mechanism :
 - H2CO3/ Hydrogen (H⁺)
 - Bicarbonate (HCO₃⁻) (Alkali Reserve)

 HCO_{2}

Bicarbonate Buffer: Chief Buffer system of Blood

- NaHCO3 the salt part of buffer neutralizes the strong and non volatile acids added to blood.
- It constitutes Alkali reserve(HCO3-)
- Sodium Bicarbonate (NaHCO₃) and carbonic acid (H₂CO₃) → Maintain a 20:1 ratio → HCO₃⁻ : H₂CO₃

```
HCl + NaHCO_3 \leftrightarrow H_2CO_3 + NaCl
```

 $NaOH + H_2CO_3 \leftrightarrow NaHCO_3 + H_2O$

 Action of Bicarbonate (NaHCO3) converts strong dissociable acid into weak non dissociable acid (H2CO3) and a neutral salt without altering the pH

- Weak acid H2CO3 formed during buffering action of Bicarbonate buffer is then expired out by Lungs → Thus Bicarbonate buffer is connected to the respiratory system
- Bicarbonate buffer is also termed as Respiratory buffer.
- Alkali reserve is represented by the **concentration of NaHCO3** in the blood.
- Alkali reserve concentration(HCO3⁻) determines the strength of buffering action towards added H⁺ ions by acids.
- More the concentration of Alkali reserve, more is the buffering action and vice a versa.

The blood buffers are effective as long as

- The acid load added is not very high and
- The alkali reserve (HCO3 ⁻) is not exhausted

Phosphate Buffer/Urine Buffer

- When H+ ions added they are neutralized/fixed by Na2HPO4 (Alkaline Phosphate) and converted to NaH2PO4 (Acid Phosphates).
- These acid phosphates then excreted out through kidneys as acidic urine. → Thus Phosphate Buffer is connected to Excretory system.
- Phosphate Buffer also termed as Urine Buffer.
- When an alkali enters it is buffered by the acid phosphate NaH2PO4 which converted to Na2HPO4 alkaline phosphate. → Excreted in urine making it alkaline urine.

Role of Respiratory Mechanisms

- Respiratory system plays second line of defense mechanism of Acid Base Balance.
- Role of respiration in acid base balance is **short term regulatory process.**
 - H2CO3 formed from Bicarbonate Buffer, is exhaled out through respiratory system.
 - Increased H2CO3 stimulates the respiratory center in Medulla Oblongata.
 - This in turn **stimulates hyperventilation** which promptly removes H2CO3 from blood by expiration.
 - Exhalation of H2CO3 is as carbon dioxide by activity of enzyme Carbonic Anhydrase of Lungs.
 - $H^+ + HCO_3^- \leftrightarrow H_2CO_3 \leftrightarrow CO_2 + H_2O$

- Respiratory mechanism is powerful, but only works with volatile acids; Doesn't affect fixed acids like lactic acid.
- Blood pH can be adjusted through respiratory mechanism
 → By changing rate and depth of breathing.
- Low H2CO3 concentration in blood depresses respiratory center, causes hypoventilation i.e. slow and shallow respiration. → This retains H2CO3 in blood.
- If Nervous center / Respiratory system fails → Acid Base Balance fails.

Role of Renal Mechanism

- **Renal mechanism** is the **third line of defense mechanism**.
- Role of renal mechanism is long term regulatory process.
- The acid and alkaline phosphates formed during phosphate buffering mechanism are filtered from blood and excreted out through urine. → Thus the phosphate buffer system is directly connected to renal mechanism.
- Renal mechanism conserve and produce Bicarbonate ions (Alkali reserve).
- Renal Mechanism is the **most effective regulator** of blood pH.
- If kidneys fail, pH balance fails.

Renal System maintains Acid Base Balance through:

- Reabsorption of Bicarbonate (HCO3⁻) ions.
- Excretion of H⁺ ions
- Excretion of titrable acids(Acid Phosphates)
- Excretion of Ammonium ions (Glutaminase activity)

Rates of correction

- Buffers function almost instantaneously
- Respiratory mechanisms take several minutes to hours
- Renal mechanisms may take several hours to days

BNSc_base acid balance

17

MECHANISM FOR REGULATION OF ACID BASE BALANCE

- Buffer system: temporary solution
- Respiratory mechanism provide short time regulation
- Renal mechanism : permanent solution
- Urine pH < plasma pH ,4.5-9.5
- Eliminate nonvolatile acid, buffered by cation (principally Na⁺)
- Maintain alkali reserve

From Thibodeau GA, Patton KT: Anatomy & physiology, ed 5, St Louis, 2003, Mosby. Mosby items and derived items copyright © 2004, 2000 by Mosby, Inc.

Acid Base Imbalance OR Conditions Of Acid Base Disturbances

- Homeostasis of blood pH is tightly controlled by mechanisms of Acid Base Balance.
- Extracellular fluid = 7.4
- Blood pH regulated to = 7.35 7.45

Occurrence of Acid Base Imbalance

- When Factors involved in homeostatic mechanisms to regulate Acid Base Balance fails to work efficiently.
- Does not maintain the altered pH of blood to normal constant range.
- Results into Acid Base Imbalance.

ACIDOSIS / ALKALOSIS

- Two major disturbances in Acid-Base balance
 - Acidosis : Decreased pH/Increased H⁺ ions
 - Alkalosis : Increased pH/Decreased H⁺ ions
- Acidosis (Acidemia) below 7.35
- Alkalosis (Alkalemia) above 7.45
- Blood pH < 6.8 or > 8.0 death occurs

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Effect of Altered pH

- Altered pH may seriously disturbs the vital processes. → Might lead to fatality.
- Most enzymes function only with narrow pH ranges.
 - Extremes of pH affects the enzymatic action by protonation or deprotonation at the active sites of Enzymes. → Makes Enzymes inactive.
- **Inactivated Enzymes** affect metabolic reactions and metabolic pathways.
 - Metabolism gets deranged.
 - Leads to metabolic syndromes.

pH also affect excitability of Nerve and Muscle cells

ACIDOSIS / ALKALOSIS

- pH changes have dramatic effects on normal cell function
 - 1. Changes in excitability of nerve and muscle cells
 - 2. Influences Enzyme activity
 - 3. Influences **K**⁺ levels/Retention of K⁺

Changes In Cell Excitability

- pH decrease (more acidic) depresses the central nervous system
 - Can lead to loss of consciousness
- pH increase (more basic)causes over excitability of nervous system.
 - Tingling sensations, nervousness, muscle twitches

Influences On Enzyme Activity

- pH increases or decreases can alter the shape of the enzyme rendering it non-functional
- Changes in enzyme structure can result in accelerated or depressed metabolic actions within the cell

Influences On K⁺ Levels

- If H⁺ concentrations are high (acidosis) than H⁺ is secreted in greater amounts
- This leaves less **K**⁺ than usual excreted.
- The resultant K⁺ retention can affect cardiac function and other systems

Small changes in pH can produce major disturbances

- Acid-base balance can also affect Electrolytes (Na⁺, K⁺, Cl⁻)
- Can also affect Hormones

4 Types of Primary Acid-Base Disorders

Source: McKean S, Ross JJ, Dressler DD, Brotman DJ, Ginsberg JS: Principles and Practice of Hospital Medicine: www.accessmedicine.com

Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

Respiratory Acidosis

- Primary Carbonic acid excess
- Increased H2CO3/Increased pCO2
- Defect in respiratory centre of brain
- Defect in respiratory organ system
- **Decreased elimination of H2CO3** by the lungs.
- Hypoventilation
- **Increased** blood levels of CO₂ above 45 mm Hg.
- Hypercapnia high levels of pCO₂ in blood

- Respiratory acidosis develops when the lungs don't expel CO₂ adequately.
- This can happen in diseases that severely affect the lungs.

Chronic conditions:

- Depression of respiratory center in brain that controls breathing rate – drugs or head trauma
- Paralysis of respiratory or chest muscles
- Emphysema
- Asthma
- Pneumonia
- Pulmonary edema
- Obstruction of respiratory tract
- Congestive Cardiac Failure

HYPOVENTILATION Causes Respiratory Acidosis

- breathing is suppressed holding CO₂ in body
- pH = 7.1

Acute conditions:

- Adult Respiratory Distress Syndrome
- Pulmonary edema
- Pneumothorax

Compensation for Respiratory Acidosis

 Kidneys eliminate hydrogen ion and retain bicarbonate ions.

Signs and Symptoms of Respiratory Acidosis

- Breathlessness
- Restlessness
- Lethargy and disorientation
- Tremors, convulsions, coma
- Respiratory rate rapid, then gradually depressed
- Skin warm and flushed due to vasodilation caused by excess CO₂

Treatment of Respiratory Acidosis

- Restore ventilation
- IV lactate solution
- Treat underlying dysfunction or disease

Respiratory Alkalosis

• Primary Carbonic acid deficit

- Decreased H2CO3
- pCO₂ less than 35 mm Hg (hypocapnea)
- Most common acid-base imbalance
- Primary cause is **hyperventilation**
- Washes out excessive quantity of H2CO3 through expiration process of lungs.
- Stimulation of respiratory center in brain → Hyperventilation

Conditions that stimulate respiratory center:

- Oxygen deficiency at high altitudes
- Pulmonary disease and Congestive heart failure caused by hypoxia
- Respiratory center lesions
- Acute anxiety
- Fever, anemia
- Early salicylate intoxication
- Cirrhosis
- Gram-negative sepsis/Meningitis

Respiratory Alkalosis

- **Anxiety** is an emotional disturbance
- The most common cause of hyperventilation, and thus respiratory alkalosis, is noted in anxiety

High Altitude

- Low concentrations of O₂ in the arterial blood reflexly stimulates ventilation in an attempt to obtain more O₂
- Too much **CO**₂ is "blown off" in the process

Respiratory center lesions

- Damage to brain centers responsible for monitoring breathing rates
 - Tumors
 - Strokes

Fever

 Rapid shallow breathing blows off too much CO₂

Salicylate poisoning (Aspirin overdose)

Ventilation is stimulated without regard to the status of O_2 , CO_2 or H^+ in the body fluids

Respiratory Alkalosis

- Kidneys compensate by:
 - Retaining hydrogen ions
 - Increasing bicarbonate excretion
- If kidneys are functioning normal → The conditions of respiratory acidosis or alkalosis are compensated.
 - Kidneys conserve hydrogen ion
 - Excrete bicarbonate ion

HYPERVENTILATION

Causes Respiratory Alkalosis

Treatment:

- Treat underlying cause
- Breathe into a paper bag
- IV Chloride containing solution Cl⁻ions replace lost bicarbonate ions

Metabolic Acidosis

- Primary Alkali deficit
- Bicarbonate deficit blood concentrations of bicarbonate drop below 22mEq/L
- Causes:
 - Loss of bicarbonate through diarrhea or renal dysfunction.
 - Overproduction production of acids (lactic acid or ketones)
 - Failure of kidneys to excrete H⁺
- Occurs when there is a decrease in the normal 20:1 ratio
 - Decrease in blood **pH** and bicarbonate level
- Excessive H⁺ or decreased HCO₃⁻

The causes of metabolic acidosis can be grouped into <u>five</u> major categories 1) Ingesting an acid or a substance that is metabolized to acid 2) Abnormal Metabolism 3) Kidney Insufficiencies 4) Strenuous Exercise 5) Severe Diarrhea

Symptoms of Metabolic Acidosis

- Headache, lethargy
- Nausea, vomiting, diarrhea
- Coma
- Death

Compensation for Metabolic Acidosis

- Increased ventilation.
- Renal excretion of hydrogen ions if possible.
- K⁺ exchanges with excess H⁺ in ECF.
- H⁺ into cells, K⁺ out of cells.

Treatment of Metabolic Acidosis

IV lactate solution

Metabolic Alkalosis

• **Bicarbonate Excess** - concentration in blood is greater than 26 mEq/L

• Causes:

- Excess vomiting = loss of stomach acid
- Excessive use of alkaline drugs
- Certain diuretics
- Endocrine disorders
- Heavy ingestion of antacids
- Severe dehydration
- Cushings Syndrome
- Prolonged exposure to x rays and UV rays

- Elevation of **pH** due to an increased 20:1 ratio
 - May be caused by:
 - An **increase** of bicarbonate
 - A **decrease** in hydrogen ions
 - Imbalance again cannot be due to CO2
 - Increase in **pH** which has a nonrespiratory origin

Metabolic Alkalosis

- Can be the result of:
 - 1) Ingestion of Alkaline Substances
 - 2) Vomiting (loss of HCl)
- Baking soda (**NaHCO**₃) often used as a remedy for gastric hyperacidity
 - **NaHCO**₃ dissociates to **Na**⁺ and **HCO**₃⁻

Symptom for Metabolic Alkalosis

- Respiration slow and shallow
- Hyperactive reflexes ; tetany
- Often related to depletion of electrolytes
- Atrial tachycardia
- Dysrhythmias

Arterial Blood Gas(ABG)Analyzer determines Acid Base Balance and Imbalance

- 1. Note whether the pH is low (acidosis) or high (alkalosis)
- 2. Decide which value, pCO_2 or HCO_3^- , is outside the normal range
- 3. If the cause is a **change in pCO**_{2,/}**H2CO3** the problem **is respiratory.**
- 4. If **the change is in HCO_3^-** the problem is **metabolic.**

- Arterial pH: 7.35 7.45
- HCO₃⁻: 22 26 <u>mEq/L</u>
- PCO₂: 35 45 mmHg
- TCO₂: 23 27 <u>mmol/L</u>
- PO₂: 80 100 mmHg
- Base Excess: -2 to +2
- Anion Gap: 12 14 mEq/L

THANK YOU