Water And Electrolytes Balance And Imbalance In Human Body

Diyah Candra Anita

BODY WATER

- Water is the chief constituent of human body.
- Water is the chief solvent of body.
- Water comprises 60-70% of total body weight
- Human body cannot exist without Water

Sources Of Body Water

ENDOGENOUS SOURCES

- Drinking Water, Beverages
 →1000-1500 ml
- Water from Cooked Foods
- Water intake through mouth is highly variable 1-5 Liters this depend on :
 - Social habits
 - Climatic condition

EXOGENOUS SOURCES

- Metabolic Water 400 ml
- Produced during metabolism oxidation of food substances.

(At end of ETC Process)

Distribution Of Body Water

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

In an adult of 70 kg body

- Total Body Water : 60-70% /36-49 Lt
- Intracellular Fluid : 65% -35 L
- Extracellular Fluid : 35% -14 L
 - Interstitial Tissue Fluid : 25% 11L
 - Plasma /Intra Vascular Fluid : 8% - 3L
 - Transcellular Fluid : 2%

ght @ The McGraw-Hill Companies, Inc. Permission required for reproduction or displa

- Body water content in percentage of a body weight is lowest in :
 - (A)Well built man
 - (B) Fat woman
 - (C)Well nourished child
 - (D) Fat man

Functions Of Body Water

- Involved in Biochemical reactions
 - Water act as reactant in many hydration
 - Hydrolytic reactions of metabolic pathways.
- Transporting media of body:
 - Transportation of nutrients and waste metabolites through aqueous media of blood and tissue floods.
- Regulates body temperature
- Water transports Hormones, Enzymes, blood platelets, and red and white blood cells
- Water act as a solvent for Electrolytes and Non electrolytes
- Water Facilitates Digestion and promoting Elimination of ingested food
- ✤ Water serve as a tissue Lubricant

Body Water Input and Output

Body Water Input

- Body can gain water by
 - Ingestion of liquids and moist foods (2300mL/day)
 - Metabolic synthesis of water during cellular respiration (200mL/day)

Body Water Output

- Body losses water through:
 - Kidneys (1500mL/day)
 - Evaporation from Skin (600mL/day)
 - Exhalation from Lungs (300mL/day)
 - Feces (100mL/day)

BNSc-international class

BODY ELECTROLYTES

What Are Electrolytes?

- Substance when dissolved in solution dissociates into ions
- These ions are able to **carry an electrical current**
- An Electrolyte is a substance
- Which develops an electrical charge when dissolved in water

Body Electrolytes

- Salts like **NaCl** and **KCl** in aqueous solutions gets dissociated to
- Charged ions Na⁺ and Cl⁻ called as Electrolytes.
- The concentration of these Electrolytes is expressed as mEq/L.

Types Of Electrolytes

- **CATION** Positively charged Electrolyte
- ANION Negatively charged Electrolyte
- Water molecules completely surround these dissociated ions
- These prevents union of Cations and Anions.

Electrolytes In Body Fluid Compartments

INTRACELLULAR Electrolytes	EXTRACELLULAR Electrolytes
POTASSIUM	SODIUM
MAGNESIUM	CHLORIDE
PHOSPHOROUS	BICARBONATE

To Maintain Electrical Neutrality In Each Fluid Compartments

Number Cations = Number Anions

ECF Cations	ECF Anions
Na ⁺ (140 mEq/L)	Cl ⁻ (103 mEq/L)
K+	HCO3 ⁻
Ca ⁺	HPO4
Mg ⁺	SO4
Total Cations 155 mEq/L	Total Anions 155 mEq/L

Predominant Cations and Anions of ECF:

Na⁺ and Cl⁻ respectively.

ICF Cations	ICF Anions
Na ⁺	Cl-
K+ (150 mEq/L)	HCO3 ⁻
Ca+	HPO4 (140 mEq/L)
Mg ⁺	SO4
Total Cations 195 mEq/L	Total Anions 195 mEq/L

Thus the predominant Cations and Anions of ICF K⁺ and HPO4⁻⁻ respectively.

Electrolyte and protein anion concentrations

Figure 27.06 Tortora - PAP 12/e Copyright © John Wiley and Sons, Inc. All rights reserved.

Functions Of Body Electrolytes

- Electrolytes are well distributed in the body compartments.
- Electrolytes in the medium/compartments produce osmotic pressure.
- This osmotic pressure helps in maintaining water balance.

Electrolytes

- Na⁺: Most abundant electrolyte in the ECF.
- K⁺: Essential for normal membrane excitability for nerve impulse
- Cl⁻: Regulates osmotic pressure and assists in regulating acid-base balance
- **Ca²⁺:** Promotes nerve impulse and muscle contraction/relaxation
- Mg²⁺: Plays role in carbohydrate and protein metabolism, storage and use of intracellular energy and neural transmission. Important in the functioning of the heart, nerves, and muscles

Movement of Water and Electrolytes

- **Diffusion** movement of particles down a concentration gradient.
- **Diffusion:** the random movement of particles in all directions through a solution
- Osmosis: movement of water across a membrane from a less concentrated solution to a more concentrated solution
- **Osmosis** diffusion of water across a selectively permeable membrane

Osmolarity: The number of moles **per liter of solution**

Osmolality: The number of moles **per Kg of Solvent.**

Important

- Sodium and its associated ions in plasma make the largest contribution (90%) for plasma Osmolality.
- Osmolality is measured by Osmometer
- **Osmolality:** concentration of a solution determined by the number of dissolved particles per kilogram of water.
- Osmolality controls water movement and distribution in body fluid compartments

Active transport

- Movement of solutes across membranes;
- Requires transporters and expenditure of energy
- Movement of particles is up a concentration gradient

Filtration

- Transfer of water and solutes through a membrane
- From a region of high pressure to a region of low pressure

Normal Fluid and Electrolytes Exchanges In Body

- Water And Electrolytes Movement INN and OUT of Cells.
- Normally in a healthy body there **is osmotic equilibrium maintained in each compartment.**
- In a healthy body the semipermeable cell membrane →
 Allows only passage of Water but not Electrolytes through it
- Disturbance in osmotic equilibrium of compartments :
 - Draws water from the compartment with lower osmotic pressure (Hypotonic)
 - Into the compartment with higher osmotic pressure (Hypertonic)
- → Until equilibrium is restored

- In the concentration gradient of K⁺ and Cl⁻
 - K⁺ tends to diffuse out of the cells and Cl⁻enters into cells.
- During difference in electrical potential
 - For example in relative negativity inside the cells
 - There tend to keep Cl⁻ out and K⁺ inn.

•Remember

- Cells do not allow accumulation of Na $^{\scriptscriptstyle +}$
- Na rapidly enters in the cells
- By the Sodium pump, Na is effectively extrudes out from ICF
- By active transport of Na out of cells.
- However in case of Na + diffusion into cells
 - It is favored by both the concentration gradient and electrical potential.
- Where Sodium goes, Water follows

Homeostasis Of Body Water OR Regulation Of Body Water

Water Balance

- An healthy adult individual always try
 - **To maintain water balance** by the homeostatic mechanisms.
- Since Water balance is vital for human body
- A body is said to be in water balance In a day
 - When the amount of **water intake in the body is** equal
 - To the amount of water output by that body
- A healthy body tries to regulate the body water
 - Proportionately distribute the water in ICF and ECF

Electrolyte Balance

Water Input = 2100ml	Water Out put 2100 ml
Drinking Water 1000 ml	Urine 1000 ml
Cooked Foods 700 ml	Feces 100 ml
Metabolic Water 400 ml	Insensible loss Skin Feces 100 Ml - 600 ml Lungs 400 ml

Electrolyte Balance

- Healthy body obeys the **law of electrical neutrality**.
 - Fluid in any body compartment **contain, equal number of Cations and Anions**.
- Specific concentrations of Electrolytes in the body compartments are of most important
 - In distribution and retention of body water.
- In healthy state the Osmotic pressure due to Cations is equal to the osmotic pressure due to Anions.
 - Which is **predominantly due to equal concentrations of Cations and Anions in each compartment.**

Factors Regulating Water And Electrolyte Balance

- In human body Water and Electrolytes go togetherly.
- That means the **osmotic equilibrium created by Electrolytes help in maintaining water balance.**
- If there is **imbalance in Electrolytes it directly affects** Water balance.
- Since the Electrolytes and Water balance go hand in hand in human body.
- Hence factors regulating the water and electrolytes are same.

Homeostasis of Water And Electrolytes Is Maintained By

Solute Homeostasis Maintained by:

- Ion transport
- Water movement
- Kidney function

These functions act to keep body fluids:

- Electrically neutral
- Osmotically stable

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display

A body consume fluids and food items variably depending upon habits and climatic condition.

Intake of water and electrolytes is rarely proportional.

Kidneys play a predominant role

• In **regulating water and electrolyte balance** in the body normally.

Kidneys play role to excrete Excess water through urine (Dilute form of Urine)

OR

Excess Electrolytes through urine (Concentrated form of Urine)

Biochemical Factors Regulating Water And Electrolyte Balance

Neural Mechanism- Thirst Mechanism

Antidiuretic Hormone/Vasopressin

Renin Angiotensin System

Aldosterone

Atrial Natriuretic Peptide(ANP)

Kinins (Increases Salt and Water excretion)

1. Neural Mechanism/Thirst Mechanism Regulate Low Body Water

- When the **body water is lowered due to**:
 - No intake of fluids
 - Body fluids lost through obligatory losses (Urine and Feces).
- This leads to decrease in volume of body fluids with respect to solutes and rise in osmotic pressure

ht © The McGraw-Hill Companies. Inc. Permission required for reproduction or display

- The ECF volume decreases and becomes hypertonic.
- This tends to draw water from ICF causing cellular dehydration.

The cellular dehydration stimulates The thirst centre located in hypothalamus.

- In response to the stimulus to thirst center
 - There occurs dryness of mouth and Pharynx .
 - Feeling of thirst makes drink water
 - Water ingested orally quench the thirst to regulate the body water

2. Antidiuretic Hormone (ADH)/Vasopressin

- Anti Diuretic Hormone(ADH) is produced in Hypothalamus
 - Stored in posterior pituitary gland
- An increase in Osmolality (Na⁺ conc) of plasma
 - Promotes ADH secretion and vice versa.
- ADH is water conservation hormone
 - It acts on renal collecting tubule
 - For reabsorption of water by renal tubules

- Role Of Anti Diuretic Hormone (ADH)
 - When the **body water is depleted**

Posterior pituitary

ADH

(vasopressin)

Adrenal gland

Kidne

Diuresis

Aldosterone

• ADH exerts **Antidiuretic effect**

ADH affects renal tubules Provides for the **facultative reabsorption of water from distal tubules.**

- Urine output will be lower
- Urine concentration will be increased
- Body water will be maintained

3. Renin Angiotensin Mechanism

- Renin-Angiotensin System works when the:
 - Blood volume is low
 - Blood pressure is low

- Renin is released by kidneys in response to decreased blood volume
- Renin causes Angiotensinogen (plasma protein formed in Liver) to split & produce Angiotensin I

- Lungs convert Angiotensin I to Angiotensin II By Angiotensin Converting Enzyme.
- Angiotensin II then stimulates adrenal gland to release Aldosterone
- Aldosterone then increase the peripheral vasoconstriction
- Renin Angiotensin System regulates Aldosterone
 hormone from Adrenal gland
 - During homeostatic mechanism of Water and Electrolyte Balance.
 - Fall in E.C.F volume
 - Decreases blood pressure
 - Sensed by Juxtaglomerular apparatus of Nephrons of Kidneys to **secrete Renin**
 - Renin then stimulate Liver Angiotensinogen to produce Angiotensin I

Renin-angiotensin-aldosterone system

- Angiotensin I is converted to Angiotensin
- By Lung produced enzyme Angiotensin Converting Enzyme(ACE).
- Angiotensin II stimulates the release of Aldosterone from Adrenal gland.

4. Role Of Aldosterone

• Aldosterone is a **Steroid Hormone**.

- It is a **Mineralocorticoid** produced by **Zona Glomerulus of Adrenal Cortex.**
- It has most important effect on Mineral Metabolism
- Aldosterone is released as part of Renin Angiotensin mechanism
 - Acts on renal distal convoluted tubule
- The hormone Aldosterone by its action:
 - Increases the rate of reabsorption of Na⁺ (95 %) and Cl-
 - Increases K⁺ loss through Urine

Role of Aldosteron

- Aldosterone increases
 Sodium uptake from the tubular fluid
- Regulates water reabsorption by renal tubules and add into the blood
- Makes excretion of Potassium

- Thus **Aldosterone maintain Water and Electrolyte Balance** by its action on renal tubules:
 - Reabsorbs Sodium
 - Retains Water
 - Looses Potassium

BNSc-international class

5. Atrial Natriuretic Peptide or Factor (ANP)/(ANF)

• ANP is a Cardiac hormone

- Secreted by **right Atrium of Heart.**
- Chemically ANP is a **Polypeptide hormone**
- ANP is released in response to increased blood pressure in the atria (due to increased blood volume)
- ANP opposes the Renin-Angiotensin-Aldosterone system

- ANP suppresses Renin level
- Decreases the release of Aldosterone
- Decreases ADH release
- ANP stimulates excretion of Na and H2O
- Reduces vascular resistance by causing
 - vasodilation.

Role Of Atrial Natriuretic Peptide :

ANP increases the urinary excretion of Na⁺ and regulates the electrolytes balance

6. Role of Kinins

- Kinins are proteins in the blood
- Kinins cause inflammation and affect blood pressure (especially lowers the blood pressure).
- Kinins increases Salt and Water excretion

Osmolarity of a Solutions

Isotonic Solution

<u>Same</u> concentration of <u>solutes</u> as <u>plasma</u>

Hypertonic Solution

<u>Greater</u> concentration of <u>solutes</u> than <u>plasma</u>

Hypotonic Solution

<u>Lesser</u> concentration of <u>solutes</u> than <u>plasma</u>

Example Of **ISOTONIC SOLUTIONS**

- 0.9% Sodium Chloride Solution / Normal Saline
- **Ringer's Solution** typically contains
 - 1. Sodium Chloride
 - 2. Potassium Chloride
 - 3. Calcium Chloride
 - 4. Sodium Bicarbonate
- Lactate Ringer's Solution

Contains additionally Lactate

HYPOTONIC SOLUTIONS

- 5% Dextrose & Water
- 0.45% Sodium Chloride
- 0.33% Sodium Chloride

Copyright David M. Phillips/Visuals Unlimited

HYPERTONIC SOLUTIONS

- 3% Sodium Chloride
- 5% Sodium Chloride
- Whole Blood
- Albumin
- Total Parenteral Nutrition
- Tube Feedings
- Concentrated Dextrose (>10%)

w-Hill Companies, Inc. Permission required for reproduction or display.

ght David M. Phillips/Visuals Unlimited

REGULATION OF FLUID VOLUME

Water Electrolyte Imbalance Conditions

Dehydration Over hydration

- Dehydration is a condition of Water imbalance.
- Dehydration is characterized by disturbance of Water and electrolyte balance

Basic Cause Of Dehydration

- No Ingestion of water
- Excessive Loss of body fluids

Features Of Dehydration

- Water Deficiency Condition
- Low body water
- Low blood volume
- Disturbance in body Electrolytes.
- In a **dehydrated body** the **output of** water exceeds the water intake.
- This causes **reduction of body water below the normal level**

Over Hydration /Water Excess

Causes Of Water Excess

- Excessive administration of parenteral fluids.
- Renal Failure (No/Less excretion of Urine)
- Hypersecretion of ADH
- Administration of Narcotics, Anaesthesia causes secretion of ADH
- Excess of Aldosterone (Conn's Syndrome)

Clinical Manifestation

- Headache
- Nausea
- Incoordination of Movements
- Delirium

Edema/Swelling

- Condition in which excess fluid accumulates in the **interstitial compartment.**
- It is a response to inflammation and injury

Edema (swelling) of the ankles and feet

- Increased Hydrostatic Pressure
- Small blood vessels become leaky and releases fluid into nearby tissues.
 - Venous obstruction, Lymphedema, CHF, Renal failure
- Lowered Plasma Osmotic pressure (Protein loss)
 - Liver failure, Malnutrition, Burns
- Increased capillary membrane permeability
 - Inflammation, Sepsis

Thank You