

STATISTIK INFERENSIAL (PARAMETRIK)

Menik Sri Daryanti, S.ST., M.Kes

Prodi Kebidanan Program Sarjana dan Pendidikan Profesi Bidan Fakultas Ilmu Kesehatan Universitas 'Aisyiyah Yogyakarta

SKALA DATA

NOMINAL:

data yang hanya dapat dikelompokkan menurut kategorinya saja : jenis kelamin, warna, agama, pekerjaan, dll

ORDINAL:

data yang dapat dikelompokkan/kategori, antar kelompok **ada tingkatan**: pendidikan, sosial ekonomi, sikap dll

INTERVAL

data yang dapat dikelompokkan, antar kelompok ada tingkatan dan memiliki jarak yang pasti (ada nilai 0) : suhu, nilai ujian, dll

RATIO

data yang dapat dikelompokkan, antar kelompok ada tingkatan, memiliki jarak yang pasti serta memiliki nilai absolute/mutlak: berat, tinggi, jarak, dll

Skala data tidak mutlak

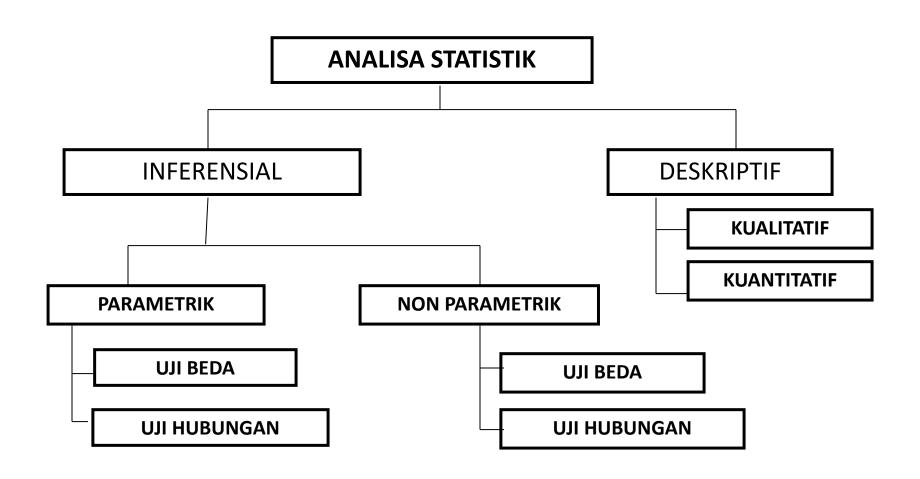
Penentuan skala dipengaruhi oleh penentuan definisi operasional variabel.

Example:

- → Berat badan
 - ✓ Nilai yang diperoleh dari hasil penimbangan dengan menggunakan timbangan : RATIO
 - ✓ Hasil penimbangan dikategorikan : kurus, normal, gemuk, obesitas : NOMINAL

STATISTIK INFERENSIAL

Penarikan kesimpulan (inferensi) tentang suatu karakteriktik populasi dengan menggunakan informasi dari sampel yang diambil dari populasi tersebut.



PENENTUAN UJI STATISTIK

- ✓ Desain penelitian
- ✓ Hipotesis
- ✓ Skala data
- ✓ Normalitas

TEKNIK ANALISA DATA

ANALISA INFFERENSIAL

Macam-macam uji yang digunakan

Uji Parametrik
 Syarat → (interval & ratio, data normal)

Uji Beda : T-Test bebas, T-Test Terikat Anova 1 jalan

Uji Hubungan : Korelasi Product Moment Pearson Regresi

 Uji Non Parametrik biasanya digunakan → <u>(nominal & ordinal, data</u> <u>tidak normal)</u>

Uji Beda:
Mann-Whitney, Wilcoxon
Kruskal Wallis, Cochran

Uji Hubungan : Korelasi dari Spearman, Chi Square

UJI NORMALITAS DATA

Bila akan menggunakan statistik parametrik, data yang diuji harus normal dan mempunyai skala : **interval atau ratio**, sedangkan penggunaan statistik non parametrik bila skala datanya : nominal atau ordinal dan data normal atau tidak normal.

UJI NORMALITAS HANYA DIGUNAKAN PADA DATA YANG MEMPUNYAI SKALA INTERVAL ATAU RATIO.

Salah satu cara untuk mengetahui suatu data terdistribusi secara normal atau tidak, dengan menggunakan uji : 1 sample Kolmogorov-Smirnov / Saphiro Wilk.

Data dikatakan normal jika nilai sig 2 tailed nya: > 0,05

Uji Parametrik

UJI BEDA

T-TEST BEBAS

(INDEPENDENT SAMPLES T-TEST)

T-TEST TERIKAT

(PAIRED SAMPLE T-TEST)

INDEPENDENT SAMPLE T TEST / T TEST BEBAS

Prosedur ini digunakan untuk menguji beda ratarata dari 2 kelompok yang <u>tidak saling</u> <u>berhubungan.</u>

Misalkan kita akan menguji apakah ada beda ratarata berat badan bulan ini, antara balita laki-laki dan perempuan.

Rata-rata berat badan bulan ini antara balita laki-laki dan perempuan **berbeda** bila pada tabel Independent Samples Test, nilai pada kolom : **Sig (2-tailed) nilainya lebih kecil [<] dari 0,05.**

→ T-Test

[DataSetO]

Group Statistics

	JENIS_ KELAMIN	N	Mean	Std. Deviation	Std. Error Mean
BB_INI	LAKI-LAKI	10	15.0250	2.60462	.82365
	PEREMPUAN	10	15.9000	3.92145	1.24007

Independent Samples Test

			t for Equality of ances				t-	test for Equality	of Means		
										95% Confidenc Differ	
		F	Sig.	t	df	Sig. (2-tailed		Mean Difference	Std. Error Difference	Lower	Upper
BB_INI	Equal variances assumed	2.663	.120	588	18	.564	1	87500	1.48868	-4.00261	2.25261
	Equal variances not assumed			588	15.647	.569		87500	1.48868	-4.03666	2.28666

PAIRED SAMPLES T TEST/TTEST TERIKAT

Prosedur ini digunakan untuk menguji beda ratarata dari 2 kelompok <u>yang berhubungan atau berpasangan.</u>

Misalkan kita akan menguji apakah ada beda ratarata berat badan bulan ini dengan berat badan bulan lalu.

Rata-rata berat badan bulan ini dan bulan lalu dikatakan berbeda bila pada tabel Paired Samples Test, nilai pada kolom: Sig (2-tailed) nilainya lebih kecil [<] dari 0,05.

→ T-Test

[DataSetO]

Paired Samples Statistics

		Mean	N	Std. Deviation	Std. Error Mean
Pair 1	BB_LALU	15.1250	20	3.09446	.69194
	BB_INI	15.4625	20	3.27096	.73141

Paired Samples Correlations

		N	Correlation	Sig.
Pair 1	BB_LALU & BB_INI	20	.974	.000

Paired Samples Test

				Paired Differen	ces					\Box
					95% Confidenc Differ					$ _ $
		Mean	Std. Deviation	Std. Error Mean	Lower	Upper	t	df	Siq. (2-tai	iled)
Pair1 BB_LAL	J - BB_INI	33750	.74461	.16650	68599	.01099	-2.027	19		.057

Uji Parametrik

UJI HUBUNGAN

- ✓ KORELASI PRODUCT MOMENT PEARSON
- ✓ REGRESI

KORELASI PRODUCT MOMENT PEARSON

- ✓ Uji korelasi yang digunakan untuk mengetahui derajat keeratan hubungan 2 variabel yang <u>berskala interval atau rasio</u>
- ✓ Wajib di uji normalitas dahulu
- ✓ Dinyatakan **ada hubungan** jika nilai p < 0,05

Koefisien Korelasi Pearson Product Moment

Interval Koefisien	Tingkat Hubungan
0,80 - 1,000	Sangat Kuat
0,60 - 0,799	Kuat
0,40 - 0.599	Cukup Kuat
0,20 - 0,399	Rendah
0,00 - 0,199	Sangat Rendah

Correlations

[DataSetO]

Correlations

		BB_LALU	BB_INI
BB_LALU	Pearson Correlation	1	.974
	Sig. (2-tailed)		.000
	N	20	20
BB_INI	Pearson Correlation	.974"	
	Sig. (2-tailed)	.000	
	N	20	20

^{**.} Correlation is significant at the 0.01 level (2-tailed).

REGRESI

- ✓ Analisis/uji regresi merupakan suatu kajian dari hubungan antara satu variabel, yaitu variabel yang diterangkan (the explained variabel) dengan satu atau lebih variabel, yaitu variabel yang menerangkan (the explanatory).
- ✓ Apabila variabel bebasnya hanya satu, maka analisis regresinya disebut dengan regresi sederhana. Apabila variabel bebasnya lebih dari satu, maka analisis regresinya dikenal dengan regresi linear sederhana.

Persamaan untuk model regresi linier sederhana adalah sebagai berikut.

$$Y = a + bX$$

Analisis regresi mempunyai beberapa fungsi, antara lain:

- 1. Mencari korelasi antara (beberapa) prediktor (X) dengan kriterium (Y).
- 2. Mencari persamaan garis regresi, yang dinyatakan dalam persamaan garis regresi. G3.
- 3. Memberi dasar untuk untuk memprediksi suatu kriterium melalui satu atau beberapa prediktor.
- 4. Menentukan prediktor yang paling berpengaruh terhadap kriterium, bila prediktornya lebih dari 1.

STATISTIK (X1)	M. RISET (X2)	MKK (X3)	SKRIPSI (Y)
8	8	7.5	8
7	7	7	7.25
6	7	8	7
9	7	6	8
6	9	7	6
7	7	8	7
6	8	8	7.5
8	8	7	8
8	8	8	8
6	9	7	7.25

Dari tabel di atas akan dicari persamaan garis regresi, dengan menggunakan 3 prediktor (X1, X2 dan X3) serta prediktor yang paling berpengaruh terhadap kriterium (Y).

Model Summary

Mode	R	R Square	- T	ijusted R Square	Std. Error of ne Estimate
1	.799=	.638		.458	.47694

a. Predictors: (Constant), MKK, RTISET, STATISTIK

ANOVA^b

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	2.410	3	.803	3.532	.088
	Residual	1.365	6	.227		
	Total	3.775	9			

a. Predictors: (Constant), MKK, RTISET, STATISTIK

b. Dependent Variable: SKRIPSI

Coefficients^a

		Uns	Unstandardized Coefficients			Standardized Coefficients		
Model			В		Std. Error	Beta	t	Siq.
1	(Constant)		.927		3.845		.241	.817
	STATISTIK		.538		.177	.914	3.038	.023
	RTISET	I (.070		.223	.085	.313	.765
	MKK	\	.287		.273	.296	1.052	.333

a. Dependent Variable: SKRIPSI

Tabel ke 1 : Model Summary, menunjukkan persentase kontribusi nilai prediktor terhadap nilai kriterium. Bila prediktornya hanya 1 digunakan R square, bila prediktornya lebih dari 1 gunakan adjusted R square. Dari tabel tersebut dapat dilihat bahwa nilai adjusted R square = **0.458**, nilai ini menunjukkan pengaruh dari 3 prediktor terhadap kriterium besarnya 45,8% sedangkan 54,2% dipengaruhi oleh prediktor lain.

Tabel ke 2 : ANOVA, bila nilai sig. pada tabel ini < 0,05, maka persamaan garis regresi yang diperoleh, bila digunakan untuk memprediksi, hasilnya dapat diterima/dipercaya.

Tabel 3: Coefficient, pada tabel ini ditunjukkan persamaan garis regresi yaitu: Y (skripsi) = 0,927 + 0,538 X1 (stat) + 0,070 X2 (riset) + 0.287 W3 (mkk) dari ketiga prediktor bila dibandingkan pengaruhnya terhadap kriterium maka hanya prediktor STAT yang bermakna, karena nila sig. < 0,05, sedangkan yang lain > 0,05. Bila ada lebih dari 1 prediktor yang nilai sig. < 0,05, maka yang nilai sig. lebih kecil, mempunyai pengaruh lebih besar dibandingkan prediktor lainnya.

TERIMAKASIH